2013, Number 1
<< Back Next >>
Enf Infec Microbiol 2013; 33 (1)
Bacteria resistant to antibiotics in isolates of nosocomial infection in a hospital in Colombia
Chávez M, Salazar MC, Cabrera CE, Gómez RF, Pallares CJ
Language: Spanish
References: 27
Page: 19-25
PDF size: 153.67 Kb.
ABSTRACT
objective. To identify Gram-negative bacteria with resistance to antibiotics isolated from infections associated to health care in
a tertiary hospital in the city of Cali, which can be inferred to the predominant resistance mechanism.
materials and method. Susceptibility data was obtained from 1,899 isolates of enteric Gram-negative bacteria of the Enterobacteriaceae
family and non-fermenting lactose bacteria, during 2007-2008.
results. The most frequent isolates were
E. coli, K. pneumoniae and P. mirabilis with variable resistance to β-lactams except
carbapenems.
Ps. aeruginosa showed simultaneous resistance to β-lactams (including imipenem) and aminoglycosides, but susceptibility
to quinolones and meropemen.
Simultaneous resistance to cefoxitin, third generation cephalosporins, β-lactamase inhibitors and susceptibility to cefepime observed
in isolates of
P. mirabilis, E. aerogenes, C. freundii and K. pneumoniae is probably due to production of β-lactamase Amp C.
Resistance to cephalosporins of third and fourth generation, aztreonam and β-lactamase inhibitors in isolates of
E. coli, Ps.
aeruginosa, E. cloacae, C. freundii, M. morganii and K. pneumaniae, suggests ESBL-mediated resistance.
conclusions. The high resistance to aminoglycosides, inhibitors of DNA, and production of β-lactamases may be related to the
indiscriminate use of these antibiotics in the hospital.
The interpretation of susceptibility can be inferred to underlying resistance mechanisms, allowing not only to guide the antibiotic
treatment, but helping predict which antibiotics could not be appropriate, taking into account the most likely underlying mechanism.
REFERENCES
1.-Cabrera CE, Gómez RF, Zuñiga AE, Corral RH, López B, Chávez M. “Epidemiology of nosocomial bacteria resistant to antimicrobials”. Colomb Med 2011; 42(2): 117-125.
2.-Arpin C, Dubois V, Coulange L, Andre C, Fischer I, Noury P, et al. “Extended-spectrum B-lactamase-producing Enterobacteriaceae in community and private health care centers”. Antimicrob Agents Chemother 2003; 47: 3506-3514
3.-Robicsek A, Jacoby GA, Hooper DC. “The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 2006; 6: 629-640.
4.-Poole K. “Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria”. Curr Pharm Biotechnol 2002; 3: 77-98.
5.-Paterson DL, Bonomo RA. “Extended-spectrum B- lactamases: a clinical update. Clin Microbiol Rev 2005; 18: 657-686.
6.-Martínez DV. “Betalactamasas tipo AmpC: Generalidades y métodos para detección fenotípica”. Revista de la Sociedad Venezolana de Microbiología 2009; 29(2): 78-83.
7.-Bonnet R, Chanal C, Ageron E, Sirot D, De champs C, Grimont P, et al. “Inducible AmpC β-Lactamase of a new member Enterobacteriaceae”. Antimicrob Agents Chemother 2002; 46: 3316-3321.
8.-Philippon A, Arlet G, Jacoby GA. “Plasmid-mediated AmpC-type beta-lactamases”. Antimicrob Agents Chemother 2002; 46: 1-11.
9.-Giamarellou H. “Multidrug resistance in Gram-negative bacteria that produce extended-spectrum B-lactamases (ESBLs).” Clin Microbio lInfect 2005; 11Supl. 4: 1-16.
10.-Tzouvelekis LS, Bonomo RA. “SHV-type β-lactamases”. Curr Pharm Des 1999; 5: 847-864.
11.-Bradford PA. “Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat”. Clin Microbiol Rev 2001; 14(4): 933-951.
12..-Poirel L, Kampfer P, Nordmann P. “Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum beta-lactamases”. Antimicrob Agents Chemother 2002; 46: 4038-4040.
13.-Endimiani A, Luzzaro F, Pini B, Amicosante G, Rossolini GM, Toniolo AQ. “Pseudomonas aeruginosa bloodstream infections: risk factors and treatment outcome related to expression of the PER-1 extended-spectrum beta-lactamase”. BMC Infect Dis 2006; 6: 52
14.-Naas T, Nordmann P. “OXA-type β-lactamases”. Curr Pharm Des. 1999; 5: 865-79.Cabrera CE, Gómez RF, Zuñiga AE, Corral RH, López
15.-Suárez C, Kattán J, Guzmán A, Villegas M. “Mecanismos de resistencia a carbapenems en P. aeruginosa, Acinetobacter y Enterobacteriaceae y estrategias para su prevención y control”. Infection 2006; 10: 85-93.
16.-Harris AD, Smith D, Johnson JA, Bradham DD, Roghmann MC. “Risk factors for imipenem-resistant Pseudomonas aeruginosa among hospitalized patients”. Clin Infect Dis 2002; 34: 340-345.
17.-Hooper DC. “Efflux pumps and nosocomial antibiotic resistance: A primer for hospital epidemiologists”. Clin Infect Dis 2005; 40: 1811-1817.
18.-Bauer A, Kirby W, Sherris J, Turck M. “Antibiotic susceptibility testing by a standardized single disc method”. Am J Clin Pathol 1966; 45: 493.
19.-Clinical and Laboratory Standards Institute (CLSI). “Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement”. USA; 2010. 20.-Livermore DM, Winstanley TG, Shannon KP. “Interpretative reading: Recognizing the unusual and inferring resistance mechanisms from resistance phenotypes”. J Antimicrob Chemother 2001; 48: 87-102.
21.-Torres JA, Villegas MV, Quinn JP. “Current concepts in antibiotic-resistant gram negative bacteria”. Expert Rev Anti Infect Ther 2007; 5(5): 833-843.
22.-Sader HS, Hsiung A, Fritsche TR, Jones RN. “Comparative activities of cefepime and piperacillin/tazobactam tested against a global collection of Escherichia coli and Klebsiella spp. with an ESBL phenotype”. Diagn Microbiol Infect Dis 2007; 57: 341-344.
23.-Mantilla JR, Reguero MT, González EB, García IA, Leal AL, Espinal PA. “Caracterización epidemiológica y molecular de un brote causado por K. pneumoniae productora de CTX-M del grupo 1, en una unidad de cuidados intensivos neonatal en un hospital de Bogotá”. Biomédica 2006; 26(003): 408-414.
24.-Chow JW, Fine MJ, Shlaes DM, Quinn JP, Hooper DC, Johnson MP, et al. “Enterobacter bacteremia: Clinical features and emergence of antibiotic resistance during therapy”. Ann Intern Med 1991; 115: 585-590. 25.-Kaye KS, Cosgrove S, Harris A, Eliopoulos GM, Carmeli Y. “Mechanisms of resistance: Risk factors for emergence of resistance to broad-spectrum cephalosporins among Enterobacter spp”. Antimicrob Agents Chemother 2001; 45: 2628-2630.
26.-Doi Y, Paterson DL, Adams-Haduch JM, Sidjabat HE, O’Keefe A, Endimiani A, et al. “Reduced susceptibility to cefepime among Escherichia coli clinical isolates producing novel variants of CMY-2 β-Lactamase”. Antimicrob Agents Chemother 2009; 53(7): 3159-3161.
27.-Martínez-Martínez S, Hernández-Allés L, Albertí S, Tomás JM, Benedi VJ, Jacoby GA. “In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum cephalosporins”. Antimicrob Agents Chemother 1996; 40: 342-348.
28.-Tomás M, Doumith M, Warner M, Turton JF, Beceiro A, Bou G, et al. “Antimicrob efflux pumps, OprD porin, AmpC β-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients”. Agents Chemother 2010; 54: 2219 -2224.
29.-Epp SF, Köhler T, Plésiat P, Michéa-Hamzehpour M, Frey J, Pechère JC. “Terminal Region of Pseudomonas aeruginosa outer membrane porin OprD modulates susceptibility to meropenem”. Antimicrob Agents Chemother 2001; 45: 1780-1787.