2012, Number S1
<< Back
Rev Med UV 2012; 12 (S1)
The addicted brain
Ruiz CAE, Méndez DM, Romano LA, Caynas S, Prospéro GO
Language: Spanish
References: 103
Page: 43-50
PDF size: 441.09 Kb.
ABSTRACT
Addiction to substances of abuse is a universal public health problem.
The addict brain is a result of physiological changes. The pursuing of
addiction substances depends on their ability to activate the rewarding
brain system thereby increasing the probability of persisting in exhibiting
this behavior. The drug intake not only activates the rewarding system
but also the punishment system, meaning, the system that mediates
displeasure or fear. Due to this effect, the drug becomes less a positive
reinforcer and more a negative reinforcer. Once the user of drugs try to
quit their use, the rewarding system is less active and the punishment
system which is more active is expressed, and the user suffers all the
condition of the withdrawal syndrome. As a result, the user persists in
the use of drugs, among other things, to avoid the suffering caused by
the withdrawal syndrome, mediated to a large extend by the punishment
system. In addition to these two systems, there is the prefrontal cortex
system that inactivates both rewarding and punishment systems. The
prefrontal cortex also down-regulates the expression of the behavior.
Via basal ganglia, the prefrontal contex prevent the execution of a
given behavior. It is able of interrupting an on-going behavior in order
to prevent damage. However, with the frequent use of drugs, the
prefrontal cortex loses control over these systems; consequently, the
subject becomes impulsive and unable of foreseeing the consequences
of his/her acts. Other brain regions, i. e. hippocampus and striatum
nucleus are also modified by the frequent use of drugs, making the
subject to learn environmental cues and facilitating the habit formation.
There is some literature supporting the possibility of the existence of a
predisposition to be a user of drugs, a sort of pre-addict brain. This preaddict
brain depends on genetic traits that somehow make the subject
vulnerable to drugs use. Epigenetic changes also count to explain some
subject’s vulnerability. Hence, it is of great importance to take into
account all these variables: genetic, epigenetic and environmental to
have a big picture of the user of drugs in order to mount more efficient
pharmacological and not pharmacological interventions.
REFERENCES
Organization WH. World Health Organization. http://www.who.int/ substance_abuse/terminology/who_lexicon/en/ [Acceso 19 de julio 2011].
Koob GF, Volkow ND. Neurocircuitry of Addiction. Neuropsychopharmacology 2010; 35 (1) :217-238.
Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci 2007;8(11):844-858.
National Institute on Drug Abuse N. The Science of Addiction. Drugs, Brains, and Behavior. NIH, U.S. Department of Health and Human Services; 2008:30.
Consejo Nacional Contra las Adicciones, Fuente IM de PR de la, Instituto Nacional de Salud Pública. Encuesta Nacional de Adicciones. México: Secretaria de Salud; 2008.
World Health Organization. WHO Report on the Global Tobacco Epidemic, 2008: The MPOWER package. Ginebra: World Health Organization; 2008:330.
Sowell ER, Peterson BS, Thompson PM. Mapping cortical change across the human life span. Nat Neurosci 2003:309-315.
Méndez Díaz M, Ruiz Contreras AE, Prieto Gómez B, Romano A, Caynas S, Prospéro García O. El cerebro y las drogas, sus mecanismos neurobiológicos. Salud Mental 2010; 33: 451-456,.
Olds J, Milner P. Positive Reinforcement Produced by Electrical Stimulation of Septal Area and Other Regions of Rat Brain. J Comp Physiol Psychol. 1954;47: 419-427.
Adinoff B. Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry. 2004;12(6):305-320.
O’Donnell P, Grace AA. Synaptic Interactions Accumbens Neurons: Input among Excitatory Afferents to Nucleus Hippocampal Gating of Prefrontal Cortical. J Neuroci 1995;15:3622-3639.
Martel P, Fantino M. Mesolimbic dopaminergic system activity as a function of food reward: a microdialysis study. Pharmacol, Biochem Behav 1996;53(1):221-226.
Fiorino DF, Coury A, Phillips A G. Dynamic changes in nucleus accumbens dopamine efflux during the Coolidge effect in male rats. J Neurosci 1997;17(12):4849-4855.
Mobbs D, Greicius MD, Abdel-Azim E, Menon V, Reiss AL. Humor modulates the mesolimbic reward centers. Neuron. 2003;40(5):1041- 1048.
Menon V, Levitin DJ. The rewards of music listening: Response and physiological connectivity of the mesolimbic system. NeuroImage. 2005;28(1):175-184.
Zombeck J a, Chen G-T, Johnson ZV, et al. Neuroanatomical specificity of conditioned responses to cocaine versus food in mice. Physiol Behav 2008;93(3):637-650.
Gardner EL. Addiction and brain reward and antireward pathways. Adv Psychosom Med 2011;30:22-60.
Volkow N. Role of Dopamine, the Frontal Cortex and Memory Circuits in Drug Addiction: Insight from Imaging Studies. Neurobiol Learn Mem 2002;78(3):610-624.
Parsons LH, Koob GF, Weiss F. Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine. J Pharmacol Exp Ther 1995;274(3):1182-1191.
Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009;10(8):561-572.
Schultz W. Predictive reward signal of dopamine neurons. J Neurophys 1998;80:1-27.
Mayerhofer A, Kovar KA, Schmidt WJ. Changes in serotonin, dopamine and noradrenaline levels in striatum and nucleus accumbens after repeated administration of the abused drug MDMA in rats. Neurosci Lett 2001;308(2):99-102.
Ding Z-M, Rodd Z a, Engleman E A, McBride WJ. Sensitization of ventral tegmental area dopamine neurons to the stimulating effects of ethanol. Alcohol Clin Exp Res 2009;33(9):1571-1581.
Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 1991;16(3):223-244.
Melis M, Pistis M, Perra S, Muntoni AL y cols. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci 2004;24(1):53-62.
Méndez Díaz M, Soria Gómez EJ, Rueda Orozco PE, Prospéro García O. The mighty cannabinoids: a potential pharmacological tool in medicine. En: Neural Mechanisms of Action of Drugs of Abuse and Natural Reinforcers. Research Signpost, India 2008. pp 137-158.
Phelps E A, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48(2):175-87.
Francis DD, Meaney MJ. Maternal care and the development of stress response. Curr Opin Neurobiol 1999;9:128-134.
Drevets WC. Neuroimaging and neuropathological studies of depression. Curr Opin Neurobiol 2001;11:240-249.
Ambroggi F, Ishikawa A, Fields HL, Nicola SM. Basolateral Amygdala Neurons Facilitate Reward-Seeking Behavior by Exciting Nucleus Accumbens Neurons. Neuron. 2008;59: 648-661.
Solomon RL, Corbit JD. An opponent-process theory of motivation. I. Temporal dynamics of affect. Psycholl Rev 1974;81(2):119-45.
Merlo Pich E, Lorang M, Yeganeh M, et al. Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress & ethanol withdrawal as measured by microdialysis. J Neurosci 1995;15: 5439-5447.
Tzschentke TM. The medial prefrontal cortex as a part of the brain reward system. Brain Res 2000;19: 211-219.
Moghaddam B, Homayoun H. Divergent Plasticity of Prefrontal Cortex Networks. Neuropsychopharmacology. 2008;(33): 42-55.
Yücel M, Lubman DI. Neurocognitive and neuroimaging evidence of behavioural dysregulation in human drug addiction: implications for diagnosis, treatment and prevention. Drug Alcohol Rev 2007;26(1): 33-9.
Kalivas PW, Volkow ND. The Neural Basis of Addiction: A Pathology of Motivation and Choice. Am J Psychiatry. 2005;162: 1403-1413.
Lasseter HC, Xie X, Ramirez DR, Fuchs RA. Prefrontal Cortical Regulation of Drug Seeking in Animal Models of Drug Relapse. Curr Top Behav Neurosci 2010;3: 101-117.
Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader M a. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci 2004;24(14):3554-3562.
Ito R, Dalley JW, Robbins TW, Everitt BJ. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 2002;22: 6247-6253.
Stelt M Van der, Marzo V Di. The endocannabinoid system in the basal ganglia and in the mesolimbic reward system. Eur J Pharmacol 2003;480(1-3): 133-150.
Aron AR, Poldrack RA. Cortical and Subcortical Contributions to Stop Signal Response Inhibition: Role of the Subthalamic Nucleus. J Neurosci 2006;26(9): 2424 -2433.
Baunez C, Dias C, Cador M, Amalric M. The subthalamic nucleus exerts opposite control on cocaine and “natural” rewards. Nat Neurosci 2005;8(4): 484-489.
Rouaud T, Lardeux S, Panayotis N, Paleressompoulle D y cols. Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Nat Acad Sci U S A. 2010;107(3): 1196-200.
Goldman D, Oroszi G, Ducci F. The genetics of addictions: Uncovering the genes. Nat Rev Gen. 2005;6(7): 521-532.
Li MD, Burmeister M. New insights into the genetics of addiction. Nat Rev Gen 2009;10: 225-231.
Rossini A, Mattos R, Felipe L, Pinto R. CYP2A6 polymorphisms and risk for tobacco-related cancers. Pharmacogenomics. 2008;9(11):1737- 1752.
Thomasson HR, Edenberg HJ, Crabb DW, Mai XL y cols. Alcohol and Aldehyde Dehydrogenase Genotypes and Alcoholism in Chinese Men. Am J Hum Gen 1991:677-681.
Gelernter J, Kranzler HR. Genetics of alcohol dependence. Hum Gen 2009;126: 91-99.
Ruiz-Contreras A.E, Delgado-Herrera M, García-Vaca P.A, Almeida- Rosas G.A, Soria-Rodríguez G, Soriano-Bautista A.A, Cadena-Valencia J.D, Bazán-Frías, J.R., Gómez-López N, Espejel-Núñez A, Vadillo-Ortega F, Carrillo-Sánchez K, Verdín-Reyes J.C, March-Mifsut S, Méndez- Díaz M & Prospéro-García O. Potential involvement of the AATn polymorphism of the CNR1 in the efficiency of procedural memory in humans. Neurosci. Lett. 494: 202-206, 2011.
Swan GE, Lessov-Schlaggar CN, Bierut LJ, et al. Status of Genetic Studies of Nicotine Dependence. In: Phenotypes and endophenotypes: Foundations for genetic studies of nicotine use and dependence. Tobacco Control Monograph No. 20. Bethesda, MD: US Department of Health and Human Services, National Institutes of Health, National Cancer Institute. NIH Publication No. 09-6366; 2008: 19-70.
Kessler R, Chiu WT, Demler O, Walters EE. Prevalence, Severity, and Comorbidity of 12-Month DSM-IV Disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62: 617- 627.
Khantzian E. The ego, the self, and opiate addiction: Theoretical and treatment considerations. In: Psychodynamics of drug dependence. Research Monograph series 12.; 1977: 101-117.
Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nat Rev Neurosci 2005;6: 108-118.
Liu D, Diorio J, Tannenbaum B, et al. Maternal care , hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 1997;277: 1659-1662.
Mcgowan PO, Sasaki A, D’Alessio AC, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009;12(3): 342-348.
Huot RL, Thrivikraman KV, Meaney MJ, Plotsky PM. Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment. Psychopharmacology 2001;158: 366-373.
Malvaez M, Barrett RM, Wood MA, Sanchis-Segura C. Epigenetic mechanisms underlying extinction of memory and drug-seeking behavior. Mamm Genome. 2009;20: 612-623.
Fernandez-Ruiz J, Velasquez-Perez L, Diaz R, Drucker-Colin R, Perez- Gonzalez R, Canales N, et al. Prism adaptation in spinocerebellar ataxia type 2. Neuropsychologia. 2007;45(12):2692-8.
Maschke M, Gomez CM, Ebner TJ, Konczak J. Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophys. 2004;91(1):230-8.
Perenin MT, Vighetto A. Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain. 1988;111 ( Pt 3):643-74. Epub 1988/06/01.
Ferrel C, Bard C, Fleury M. Coordination in childhood: modifications of visuomotor representations in 6- to 11-year-old children. Exp Brain Res. 2001;138(3):313-21. Epub 2001/07/20.
Held R. Plasticity in Sensory-Motor Systems. Sci Am. 1965;213(5):84-&.
Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nature Neurosci. 2000;3 Suppl:1212-7. Epub 2000/12/29.
Flanagan JR, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J Neurosci. 1999;19(20):RC34. Epub 1999/10/12.
Krakauer JW, Ghilardi MF, Ghez C. Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neurosci. 1999;2(11):1026-31. Epub 1999/10/20.
Redding GM, Rossetti Y, Wallace B. Applications of prism adaptation: a tutorial in theory and method. Neurosci Biobehav Rev. 2005;29(3):431-44. Epub 2005/04/12.
Ghahramani Z, Wolpert DM. Modular decomposition in visuomotor learning. Nature. 1997;386(6623):392-5.
Fernandez-Ruiz J, Diaz R. Prism adaptation and aftereffect: Specifying the properties of a procedural memory system. Learn Memory. 1999;6(1):47-53.
Helmholtz Hv, Southall JPC. Treatise on physiological optics. Dover ed. Mineola, NY: Dover Publications; 2005.
Harris CS. Perceptual Adaptation to Inverted, Reversed, and Displaced Vision. Psychol Rev. 1965;72(6):419-44.
Kornheiser AS. Adaptation to laterally displaced vision: a review. Psychol Bull. 1976;83(5):783-816. Epub 1976/09/01.
Redding GM, Wallace B. Prism exposure aftereffects and direct effects for different movement and feedback times. J Motoe Beh. 2000;32(1):83-99. Epub 2000/09/29.
Fernandez-Ruiz J, Diaz R, Aguilar C, Hall-Haro C. Decay of prism aftereffects under passive and active conditions. Cogn Brain Res. 2004;20(1):92-7.
Hamilton CR, Bossom J. Decay of Prism Aftereffects. J Exp Psychol. 1964;67(2):148-&.
Fernandez-Ruiz J, Hall-Haro C, Diaz R, Mischner J, Vergara P, Lopez- Garcia JC. Learning motor synergies makes use of information on muscular load. Learn Mem. 2000;7(4):193-8. Epub 2000/08/15.
Kitazawa S, Kimura T, Uka T. Prism adaptation of reaching movements: Specificity for the velocity of reaching. J Neurosci. 1997;17(4):1481- 92.
Bock O, Schneider S. Sensorimotor adaptation in young and elderly humans. Neurosci Biobehav Rev. 2002;26(7):761-7. Epub 2002/12/10.
Fernandez-Ruiz J, Hall C, Vergara P, Diaz R. Prism adaptation in normal aging: slower adaptation rate and larger aftereffect. Cogn Brain Res. 2000;9(3):223-6.
Fernandez-Ruiz J, Wang J, Aigner TG, Mishkin M. Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum. Proc Natl Acad Sci U S A. 2001;98(7):4196-201. Epub 2001/03/29.
Packard MG, Knowlton BJ. Learning and memory functions of the basal ganglia. Annu Rev Neurosci. 2002;25:563-93.
Bossom J. The Effect of Brain-Lesions on Prism-Adaptation in Monkey. Psychon Sci. 1965;2(2):45-6.
Stern Y, Mayeux R, Hermann A, Rosen J. Prism adaptation in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51(12):1584-7. Epub 1988/12/01.
Weiner MJ, Hallett M, Funkenstein HH. Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology. 1983;33(6):766-72. Epub 1983/06/01.
Canavan AG, Passingham RE, Marsden CD, Quinn N, Wyke M, Polkey CE. Prism adaptation and other tasks involving spatial abilities in patients with Parkinson’s disease, patients with frontal lobe lesions and patients with unilateral temporal lobectomies. Neuropsychologia. 1990;28(9):969-84. Epub 1990/01/01.
Paulsen JS, Butters N, Salmon DP, Heindel WC, Swenson MR. Prism adaptation in Alzheimer’s and Huntington’s disease. Neuropsychology. 1993;7(1):73.
Fernandez-Ruiz J, Diaz R, Hall-Haro C, Vergara P, Mischner J, Nunez L, et al. Normal prism adaptation but reduced after-effect in basal ganglia disorders using a throwing task. Eur J Neurosci. 2003;18(3):689-94.
Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms .1. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119:1183-98.
Baizer JS, Kralj-Hans I, Glickstein M. Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophys. 1999;81(4):1960-5. Epub 1999/04/14.
Miall RC, Silburn P. A study of motor performance and motor learning in episodic ataxia. NeuroReport. 1997;8(9-10):2159-64.
Welch RB, Goldstein G. Prism adaptation and brain damage. Neuropsychologia. 1972;10(4):387-94. Epub 1972/12/01.
Kurata K, Hoshi E. Reacquisition deficits in prism adaptation after muscimol microinjection into the ventral premotor cortex of monkeys. J Neurophys. 1999;81(4):1927-38. Epub 1999/04/14.
Bor D, Owen AM. A common prefrontal-parietal network for mnemonic and mathematical recoding strategies within working memory. Cereb Cortex. 2007;17(4):778-86. Epub 2006/05/19.
Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV. An area specialized for spatial working memory in human frontal cortex. Science. 1998;279(5355):1347-51. Epub 1998/03/21.
D’Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease J. Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res. 1998;7(1):1-13.
Gutierrez-Garralda J, Saldivar M, Fernandez-Ruiz J, editors. Characterizing how well can we remember a spatial location in our visual field. Society for Neuroscience Annual Meeting; 2008; Washington, D.C: Society for Neuroscience.
Moreno-Briseño P, Diaz R, Alonso ME, Ochoa A, Fernandez-Ruiz J, editors. Huntington’s disease patients do not adapt to incongruent error feedback Society for Neuroscience Annual Meeting; 2008; Washington, D.C.: Society for Neuroscience.
Munoz DP, Everling S. Look away: the anti-saccade task and the voluntary control of eye movement. Nature Rev Neurosci. 2004;5(3):218-28. Epub 2004/02/21.
Barrios FA, Gonzalez L, Favila R, Alonso ME, Salgado PM, Diaz R, et al. Olfaction and neurodegeneration in HD. NeuroReport. 2007;18(1):73-6. Epub 2007/01/30.
Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE. Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature. 1996;383(6601):618-21. Epub 1996/10/17.
Danckert J, Ferber S, Goodale MA. Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study. Eur J Neurosci. 2008;28(8):1696-704.
Fernandez-Ruiz J, Goltz HC, DeSouza JF, Vilis T, Crawford JD. Human parietal “reach region” primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visual motor dissociation task. Cereb Cortex. 2007;17(10):2283-92. Epub 2007/01/12.
Fernandez-Ruiz J, Diaz R, Moreno-Briseno P, Campos-Romo A, Ojeda R. Rapid topographical plasticity of the visuomotor spatial transformation. J Neurosci. 2006;26(7):1986-90.
Cruz-Ramirez N, Acosta-Mesa HG, Barrientos-Martinez RE, Nava- Fernandez LA. How good are the Bayesian information criterion and the minimum description length principle for model selection? A Bayesian network analysis. Lect Notes Artif Int. 2006;4293:494-504.