2012, Number S1
<< Back Next >>
Rev Med UV 2012; 12 (S1)
Central mechanisms for respiratory rhythm generation
Beltran-Parrazal L, Meza-Andrade R, García-García F, Toledo R, Manzo J, Morgado-Valle C
Language: Spanish
References: 40
Page: 23-28
PDF size: 347.44 Kb.
ABSTRACT
The mammalian respiratory system produces different types
of ventilatory patterns according to the general state of the
individual. Where is generated the electrical activity that control
the muscles involved in breathing? It is now accepted that a
neural network located in the ventrolateral brainstem generates
breathing. This region is known as preBötzinger Complex
(preBötC). The mechanisms for generating rhythmic activity in
the preBötC are not fully known. The aim of this review is to
provide an overview of the existing knowledge of the neural
mechanisms for respiratory rhythm generation.
REFERENCES
Hilaire G, Pasaro R. Genesis and control of the respiratory rhythm in adult mammals. News Physiol Sci. 2003;18:23-28
Feldman JL, Del Negro CA. Looking for inspiration: New perspectives on respiratory rhythm. Nat Rev Neurosci. 2006;7:232-242
Lieske SP, Thoby-Brisson M, Telgkamp P, Ramirez JM. Reconfiguration of the neural network controlling multiple breathing patterns: Eupnea, sighs and gasps [see comment]. Nat Neurosci. 2000;3:600- 607
Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre- Botzinger Complex: A brainstem region that may generate respiratory rhythm in mammals. Science. 1991;254:726-729
McCrimmon DR, Ramirez JM, Alford S, Zuperku EJ. Unraveling the mechanism for respiratory rhythm generation. Bioessays. 2000;22:6-9
Gray PA, Janczewski WA, Mellen N, McCrimmon DR, Feldman JL. Normal breathing requires preBotzinger Complex neurokinin-1 receptor-expressing neurons. Nat Neurosci. 2001;4:927-930
Hayashi F, Jiang C, Lipski J. Intracellular recording from respiratory neurones in the perfused ‘in situ’ rat brain. J Neurosci Methods. 1991;36:63-70
Paton JF, St-John WM. Long-term intracellular recordings of respiratory neuronal activities in situ during eupnea, gasping and blockade of synaptic transmission. J Neurosci Methods. 2005;147:138-145
St-John WM, Rudkin AH, Harris MR, Leiter JC, Paton JF. Maintenance of eupnea and gasping following alterations in potassium ion concentration of perfusates of in situ rat preparation. J Neurosci Methods. 2005;142:125-129
Feldman JL, Smith JC, Ellenberger HH, Connelly CA, Liu GS, Greer JJ, Lindsay AD, Otto MR. Neurogenesis of respiratory rhythm and pattern: Emerging concepts. Am J Physiol. 1990;259:R879-886
Johnson SM, Smith JC, Funk GD, Feldman JL. Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. J Neurophysiol. 1994;72:2598-2608
Rekling JC, Feldman JL. PreBotzinger Complex and pacemaker neurons: Hypothesized site and kernel for respiratory rhythm generation. Annu Rev Physiol. 1998;60:385-405
Del Negro CA, Morgado-Valle C, Feldman JL. Respiratory rhythm: An emergent network property? Neuron. 2002;34:821-830
Pace RW, Mackay DD, Feldman JL, Del Negro CA. Inspiratory bursts in the preBotzinger Complex depend on a calcium-activated nonspecific cation current linked to glutamate receptors in neonatal mice. J Physiol. 2007;582:113-125
Pace RW, Mackay DD, Feldman JL, Del Negro CA. Role of persistent sodium current in mouse preBotzinger Complex neurons and respiratory rhythm generation. J Physiol. 2007;580:485-496
Gray PA, Rekling JC, Bocchiaro CM, Feldman JL. Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBotzinger Complex. Science. 1999;286:1566-1568
Funk GD, Smith JC, Feldman JL. Development of thyrotropin-releasing hormone and norepinephrine potentiation of inspiratory-related hypoglossal motoneuron discharge in neonatal and juvenile mice in vitro. J Neurophysiol. 1994;72:2538-2541
Ramirez JM, Quellmalz UJ, Wilken B, Richter DW. The hypoxic response of neurones within the in vitro mammalian respiratory network. J Physiol. 1998;507 ( Pt 2):571-582
Shao XM, Feldman JL. Pharmacology of nicotinic receptors in preBotzinger Complex that mediate modulation of respiratory pattern. J Neurophysiol. 2002;88:1851-1858
Gaultier C, Gallego J. Neural control of breathing: Insights from genetic mouse models. J Appl Physiol. 2008;104:1522-1530
Funk GD, Smith JC, Feldman JL. Generation and transmission of respiratory oscillations in medullary slices: Role of excitatory amino acids. J Neurophysiol. 1993;70:1497-1515
Morgado-Valle C, Feldman JL. NMDA receptors in prebotzinger complex neurons can drive respiratory rhythm independent of ampa receptors. J Physiol. 2007;582:359-368
Greer JJ, Smith JC, Feldman JL. Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat. J Physiol. 1991;437:727-749
Pierrefiche O, Schmid K, Foutz AS, Denavit-Saubie M. Endogenous activation of NMDA and non-NMDA glutamate receptors on respiratory neurones in cat medulla. Neuropharmacology. 1991;30:429-440
Pena F, Ramirez JM. Endogenous activation of serotonin-2a receptors is required for respiratory rhythm generation in vitro. J Neurosci. 2002;22:11055-11064
Morgado-Valle C, Feldman JL. Depletion of Substance P and glutamate by capsaicin blocks respiratory rhythm in neonatal rat in vitro. J Physiol. 2004;555:783-792
Llona I, Eugenin J. Central actions of somatostatin in the generation and control of breathing. Biol Res. 2005;38:347-352
Huxtable AG, Zwicker JD, Poon BY, Pagliardini S, Vrouwe SQ, Greer JJ, Funk GD. Tripartite purinergic modulation of central respiratory networks during perinatal development: The influence of atp, ectonucleotidases, and atp metabolites. J Neurosci. 2009;29:14713-
Pena F, Parkis MA, Tryba AK, Ramirez JM. Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron. 2004;43:105-117
Del Negro CA, Morgado-Valle C, Hayes JA, Mackay DD, Pace RW, Crowder EA, Feldman JL. Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J Neurosci. 2005;25:446-453
Morgado-Valle C, Beltran-Parrazal L, DiFranco M, Vergara JL, Feldman JL. Somatic Ca2+ transients do not contribute to inspiratory drive in preBotzinger Complex neurons. J Physiol. 2008;586:4531-4540
Smith JC, Butera RJ, Koshiya N, Del Negro C, Wilson CG, Johnson SM. Respiratory rhythm generation in neonatal and adult mammals: The hybrid pacemaker-network model. Respir Physiol. 2000;122:131-147
Issa FG, Porostocky S. Effect of sleep on changes in breathing pattern accompanying sigh breaths. Respir Physiol. 1993;93:175-187
Carley DW, Trbovic SM, Radulovacki M. Diazepam suppresses sleep apneas in rats. American journal of respiratory and critical care medicine. 1998;157:917-920
Viemari JC, Roux JC, Tryba AK, Saywell V, Burnet H, Pena F, Zanella S, Bevengut M, Barthelemy-Requin M, Herzing LB, Moncla A, Mancini J, Ramirez JM, Villard L, Hilaire G. Mecp2 deficiency disrupts norepinephrine and respiratory systems in mice. J Neurosci. 2005;25:11521-11530
Hunt CE, Corwin MJ, Lister G, Weese-Mayer DE, Ward SL, Tinsley LR, Neuman MR, Willinger M, Ramanathan R, Rybin D. Precursors of cardiorespiratory events in infants detected by home memory monitor. Pediatric pulmonology. 2008;43:87-98
Ramirez JM, Tryba AK, Pena F. Pacemaker neurons and neuronal networks: An integrative view. Current opinion in neurobiology. 2004;14:665-674
Richter DW, Spyer KM. Studying rhythmogenesis of breathing: Comparison of in vivo and in vitro models. Trends in neurosciences. 2001;24:464-472
Ramirez JM, Telgkamp P, Elsen FP, Quellmalz UJ, Richter DW. Respiratory rhythm generation in mammals: Synaptic and membrane properties. Respir Physiol. 1997;110:71-85
Ramirez JM, Quellmalz UJ, Wilken B. Developmental changes in the hypoxic response of the hypoglossus respiratory motor output in vitro. J Neurophysiol. 1997;78:383-392