2012, Number 4
<< Back Next >>
Rev Educ Bioquimica 2012; 31 (4)
Convergencia catabólica de las rutas degradativas de isoprenoides acíclicos y de leucina en bacterias del género pseudomonas
Díaz PAL, Campos GJ
Language: Spanish
References: 15
Page: 127-135
PDF size: 461.45 Kb.
ABSTRACT
Bacteria of the
Pseudomonas genus possess the ability to grow in a variety of organic compounds using them as a source of carbon and energy. These include isoprenoids, which are very stable compounds and ubiquitous. Biodegradation of isoprenoids is influenced by its structure, being the 2-methyl branched compounds more susceptible than the 3-methyl branched. Microbial strategies for removing the 3-methyl branching group in the isoprenoids involves its carboxylation, generating an acetyl group capable of being hydrolyzed. The acyclic isoprenoid degradative pathway has been elucidated in
Pseudomonas aeruginosa and
Pseudomonas citronellolis using citronellol, geraniol or farnesol as model compounds. This is constituted by four stages: (i) oxidation-activation upper pathway, (ii) acyclic terpenes (ATU) central pathway, (iii) coupling of the β oxidation, and (iv) convergence to leucine/isovalerate (LIU) pathway. End products of these stages are channeled to the tricarboxylic acid cycle and glyoxylate.
REFERENCES
Taylor RF (1984) Bacterial triterpenoids. Microbiol Rev 48: 181–198.
Campos-García J (2010) Metabolims of acyclic terpenes by Pseudomonas. En: Pseudomonas molecular microbiology, infection and biodiversity, vol. 6. Editor: Ramos J. L. y A. Filloux, Springer, New York, NY. pp 235-254.
Seubert W (1960) Degradation of isoprenoid compounds by microorganisms. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis n. sp. J Bacteriol 79: 426–434.
Pirnik MP (1977) Microbial oxidation of methyl branched alkanes. Critical Rev Microbiol 5: 413–422.
Cantwell SG, Lau EP, Watt DS, Fall RR (1978) Biodegradation of acyclic isoprenoids by Pseudomonas species. J Bacteriol 153: 324–333.
Díaz-Pérez AL, Zavala-Hernández NA, Cervantes C, Campos-García J (2004) The gnyRDBHAL cluster is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa. Appl Environ Microbiol 70: 5102–5110.
Förster-Fromme K, Jendrossek D (2006) Identification and characterization of the acyclic terpene utilization gene cluster of Pseudomonas citronellolis. FEMS Microbiol Lett 264: 220–225.
Förster-Fromme K, Chattopadhyay A, Jendrossek D (2008) Biochemical characterization of AtuD from Pseudomonas aeruginosa, the first membrer of a new subgroup of acyl-CoA dehydrogenases with specificity for citronellyl-CoA. Microbiology 154: 789-796.
Aguilar JA., Zavala AN, Díaz-Pérez C, Cervantes C, Díaz-Pérez AL, Campos-García J (2006) The atu and liu clusters are involved in the catabolic pathways for acyclic monoterpenes and leucine in Pseudomonas aeruginosa. Appl Environ Microbiol 72: 2070–2079.
Aguilar JA, Díaz-Pérez C, Díaz-Pérez AL, Rodríguez-Zavala JS, Nikolau BJ, Campos-García J (2008) Substrate specificity of the 3-methylcrotonyl Coenzyme A (CoA) and geranyl-CoA carboxylases from Pseudomonas aeruginosa. J Bacteriol 190: 4888–4893.
Fall RR (1981) 3-Methyl-crotonyl-CoA and geranyl-CoA carboxylases from Pseudomonas citronellolis. Methods Enzymol 71: 791–799.
Chávez-Aviles M, Díaz-Pérez AL, Reyes-de la Cruz H, Campos-García J (2009) The Pseudomonas aeruginosa liuE gene encodes the 3-hydroxy-3-methylglutaryl-Coenzyme A lyase, involved in leucine and acyclic terpenes catabolism. FEMS Microbiol Lett 296: 117–123.
Chávez-Aviles M, Díaz-Pérez AL, Campos-García J (2010) The bifunctional role of LiuE from Pseudomonas aeruginosa, displays additionally HIHG-Coa lyase enzymatic activity. Mol Biol Rep 37:1787–1791.
Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Molec Microbiol 66: 829–839.
Förster-Fromme K, Jendrossek D (2008) Biochemical characterization of isovaleryl-CoA dehydrogenase (LiuA) of Pseudomonas aeruginosa and the importance of liu genes for functional catabolic pathway of methyl-branched compounds. FEMS Microbiol Lett 286:78–84.