2012, Number 3
<< Back Next >>
Rev Biomed 2012; 23 (3)
ERIC sequences in Chlamydia trachomatis
Hernández-Cortez C, Majalca-Martínez C, Hernández-Méndez JT, Giono- Cerezo S, Aguilera-Arreola MG, Castro-Escarpulli G
Language: Spanish
References: 17
Page: 87-93
PDF size: 262.80 Kb.
ABSTRACT
Introduction. One of the methods used for the
typifi cation and for bacterial genetic diversity study
is ERIC-PCR. The presence of enterobacterial
repetitive intergenic consensus sequences (ERIC)
has been described in most Gram negative bacteria,
but their presence in bacteria, such as
Chlamydia
trachomatis, has not been investigated.
Objective. To search
in silico and
in vitro for ERIC
sequences in the
Chlamydia trachomatis genome.
Materials and Methods. In silico, ERIC
sequences were searched with the bioinformatics
tool called FASTA, downloading the genomes of
Chlamydia trachomatis D/uw-3/cx,
Chlamydia
trachomatis 434/Bu,
Chlamydia trachomatis L2b/
UCH-1/proctitis,
Chlamydia trachomatis A/har-
13,
Chlamydia muridarum Nigg,
Chlamydophila
pneumoniae TW-183,
Aeromonas hydrophila,
and
Escherichia coli K12 deposited in the NCBI
database.
in vitro, the ERIC-PCR technique
was standardized with strains of
Chlamydia
trachomatis serovars D, L2, and L3.
Results. Were obtained the number of alignments,
the alignment region of each ERIC primer, and
the expectation (E) and score (S) values of each
genome. Afterwards, the presence of ERIC
sequences in strains of
Chamydia trachomatis
serovars D, L2, and L3 was determined, being 44
°C the optimal alignment temperature in the PCR.
Conclusions. With the obtained results we can
suggest that the ERIC sequences are present in
the
Chlamydia trachomatis genome, if this fi nding
is reproduced in all the serovars, a new typing
method for this bacterium could establish.
REFERENCES
Deleón-Rodríguez I, Hernández-Méndez JT. Chlamydia trachomatis ¿Un problema de salud pública en México? IPN. México DF: 1ra Ed. Escuela Nacional de Ciencias Biológicas; 2000.
Centers for disease control and prevention. Sexual ly t ransmi ted diseases www.cdc.gov/ nchstp/dstd/chlamydia_facts.htm Abril 2001.
Acos ta CB. Surgimiento de la Chlamydi a trachomatis. Epidemiología, Sistema Nacional de Vigi lancia Epidemiológica 1996; 13:1-2.
Canto de Cetina T, Polanco RL, Cupul YDG, Fernández GV, Piña CMR, Ballote ZM. Prevalencia de infección cervical por Chlamydia trachomatis en usuarias de una clínica de planeación familiar en Mérida, Yucatán. Enf Infec Micro 2001; 21:102-5.
Deleón-Rodríguez I, Hernández-Méndez JT, Alonzo-Rojo H, Jiménez-Escalante Z, Escamilla- Avilés E, Fainzilber-Moldawska Z, et al. El valor de la técnica de Papanicolaou en el diagnóstico de Chlamydia trachomatis. Bioquímica 1994; 19:177-81.
Reyes-Maldonado E, Díaz-Fuentes LA, González- Bonilla CV, Esquer-Mendivi M, Jiménez EZ, Deleón RI. Detection of Chlamydia trachomatis by inmunof lourescence, Papanicolaou and inmunoperoxidase in women with leucorrhea. Rev Lat Amer Microbiol 1996; 38:65-73.
Davin-Regli A, Bollet C, Chamorey E, Colonna DV, Cremieux A. A cluster of cases of infections due to Aeromonas hydrophila revealed by combined RAPD and ERIC-PCR. J Med Microbiol 1998; 47:499-504.
Aguilera-Arreola MG, Hernández-Rodríguez CH, Zúñiga-Bérmudez G, Figueras MJ, Castro-Escarpulli G. Aeromonas hydrophila clinical and environmental ecotypes as revealed by genetic diversity and virulence genes. FEMS Microbiology Letter 2005; 42:231-40.
Belkum AV, Struelens M, Visser A, Verbrugh H, Tibayrenc M. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol 2001; 14:547-60.
Aguilera-Arreola MG, Hernández-Rodríguez CH, Zúñiga Bèmudez G, Figueras MJ, Garduño R, Castro-Escarpulli G. Virulence potential and genetic diversity of A. hydrophila, A. caviae and A. veronii clinical isolates from Mexico and Spain: A comparative study. J Microbiol 2007; 53:877–87.
Hulton CSJ, Higgins CF, Sharp PM. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 1991; 5:825-34.
Wilson LA, Sharp PM. Enterobacterial Repetitive Intergenic Consensus (ERIC) sequences in Escherichia coli: Evolution and implications for ERIC-PCR. Mol Biol Evol 2006; 23:1156-68.
Bruijn FJ. Use of Repetitive (Repetitive Extragenic Pal indromic and Enterobacter ial Repet i t ive Intergener ic Consensus) Sequences and the polymerase chain reaction to fi ngerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Applied and Env Microbiol 1992; 58:2180-7.
Rivera IG, Chowdhury MA, Huq A, Jacobs D, Martins MT, Colwell RR. Enterobacterial Repetitive Intergenic Consensus Sequences and the PCR to Generate Fingerprints of Genomic DNAs from Vibrio cholerae O1, O139, and Non-O1 Strains. Applied and Env Microbiol 1995; 61:2898-904.
National Centerfor Biotechnolog y Information. ht tp: / /www.ncbi .nlm.nih.gov/
Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerpritting of bacterial genomes. Nucleic Acids Res 1991; 19:6823-31.
Syrmi s MW, O’Car rol l MR, Sloot s TP, Coulter C, Wainwright CE, Bell S, et al. 2004. Rapid genotyping of Pseudomonas aeruginosa harboured by adult and paediatric patients with cystic fibrosis using repetitive-element-based PCR assays. J Med Microbiol 2004; 53:1089-96