2012, Number 3
<< Back Next >>
Rev Cubana Invest Bioméd 2012; 31 (3)
Computational models of articular cartilage behavior
López-Vaca OR, Narváez-Tovar CA, Garzón-Alvarado DA
Language: Spanish
References: 31
Page: 373-385
PDF size: 152.12 Kb.
ABSTRACT
The articular cartilage provides diarthrodial articulations with low friction, resistance to wear on contact surfaces, and an effective distribution of efforts in areas of contact with the bone. On the other hand, because their tissue is alymphatic and avascular, regeneration takes a long time and is not possible in elderly patients. Various computational models have been developed to study and fully understand cartilage behavior under varying load conditions and in the presence of diseases such as osteoarthritis. The models include specific features of cartilaginous tissue allowing to predict its behavior in normal and abnormal conditions, reducing experimentation time and costs. This update paper presents the main structural and biological characteristics of the articular cartilage, as well as various computational models representing cartilaginous tissue according to its main features, with a view to simulating cartilage deterioration under varying conditions and diseases.
REFERENCES
Doblaré M. Sobre el modelado en biomecánica y mecanobiología. Discurso de posesión de la Real Academia de Ciencias Físicas y Exactas de Zaragoza. 2005. p. 1-30.
Garzón-Alvarado DA, Duque Daza CA, Ramírez AM. Sobre la aparición de la biomecánica y la mecanobiología computacional: experimentos computacionales y recientes hallazgos. Rev Cubana Invest Bioméd. 2009;28(3):83-101.
Boschetti F, Pennati G, Gervaso F, Peretti GM, Dubini G. Biomechanical properties of human articular cartilage under compressive loads. Biorheology. 2004;41(3-4):159-66.
Carter DR, Wong M. Modelling cartilage mechanobiology. Philosophical transactions of the Royal Society of London. Series B. Biological sciences. 2003;358(1437):1461-7.
Ulrich W, Meyer PH. Bone and Cartilage Engineering. Berlin-Germany: Springer; 2006. p. 55.
Flik KR, Verma N, Cole BJ. Cartilage Repair Strategies. (Williams RJ, ed.). Totowa, New Jersey: Humana Press; 2007:1-12.
Shieh AC, Athanasiou K Principles of Cell Mechanics for Cartilage Tissue Engineering. Annals of Biomedical Engineering. 2003;31(1):1-11.
Kheir E, Shaw D. Hyaline articular cartilage. Orthopaedics and Trauma. 2009;23(6):450-55.
García JJ, Cortés DH. Modelo bifaìsico no-lineal de elementos finitos para el anaìlisis mecaìnico de tejidos bioloìgicos. Parte I- Formulacioìn teoìrica. Ingeniería y Desarrollo. 2006;19:44-56.
García JJ, Cortés DH. Modelo bifásico no-lineal de elementos finitos para el análisis mecánico de tejidos biológicos Parte II: Implementación numérica y validación. Ingeniería y Desarrollo. 2006;19:57-73.
Landinez NS, Vanegas JC, Garzón DA. Modelado Matemático del Comportamiento de un Fragmento de cartílago articular. Dyna. 2009;76(157):133-44.
Huyghe J. Quadriphasic mechanics of swelling incompressible porous media. International Journal of Engineering Science. 1997;35(8):793-80.
Li L, Soulhat J, Buschmann MD, Shirazi-Adl A. Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model. Clinical Biomechanics. 1999;14:673-682.
Boschetti F, Pennati G, Scienza F. Depth Dependent Creep Response of Human Articular Cartilage During Compression. Experimental Testing and Simulation. In: Summer Bioengineering Conference. Florida; 2003:1139-42.
Chen SS, Falcovitz YH, Schneiderman R, Maroudas SR. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society. 2001;9(6):561-9.
Korhonen RK, Herzog W. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics. Journal of biomechanics. 2008;41(2):480-5.
Wachtel E, Maroudas SR. Age-related changes in collagen packing of human articular cartilage. Biochimica et biophysica acta. 1995;1243(2):239-43.
Kowalczyk P. Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells. Journal of biomechanics. 2003;36(7):961-72.
Wilson W, Van Donkelaar CC, Van Rietbergen B, Huiskes R. A fibril-reinforced poroviscoelastic swelling model for articular cartilage. Journal of biomechanics. 2005;38(6):1195-204.
Li LP, Buschmann MD. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. Biomechanics. 2000;33:1533-41.
Shirazi R, Shirazi-Adl, Hurtig M. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. Journal of biomechanics. 2008;41(16):3340-8.
Li LP, Herzog W. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation. Biorheology. 2004;41(3-4):181-94.
Wilson W, Huyghe JM, Van Donkelaar CC. A composition-based cartilage model for the assessment of compositional changes during cartilage damage and adaptation. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society. 2006;14(6):554-60.
Li LP, Herzog W. Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization. Journal of biomechanics. 2004;37:375-82.
Julkunen P, Kiviranta P, Wilson W, Jurvelin JS, Korhonen RK. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. Journal of biomechanics. 2007;40(8):1862-70.
Mansoor H, Schugart RC. A numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage. Journal of biomechanics. 2006;39:177-183.
Ateshian G The role of interstitial fluid pressurization in articular cartilage lubrication. Journal of biomechanics. 2009;42(9):1163-76.
Soltz M Ateshian G. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. Journal of biomechanics. 1998;31(10):927-34.
Basalo IM, Mauck RL, Kelly TA, Nicoll SB, Chen FH, Hung CT, et al. Cartilage interstitial fluid load support in unconfined compression following enzymatic digestion. Journal of biomechanical engineering. 2004;126(6):779-86.
DiSilvestro MR, Suh JK. A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. Journal of biomechanics. 2001;34(4):519-25.
Kojic M, Filipovic N, Stojanovic B. Computer Modeling in Bioengineering. Londres: John Wiley & Sons, Ltd; 2008. p. 313-23.