2012, Número 3
<< Anterior Siguiente >>
Rev Cubana Invest Bioméd 2012; 31 (3)
Sobre la osificación intramembranosa: un modelo de aproximación para la calvaria
Calixto LF, Ramírez MAM, Garzón-Alvarado DA
Idioma: Español
Referencias bibliográficas: 23
Paginas: 363-372
Archivo PDF: 251.37 Kb.
RESUMEN
En este artículo se ha desarrollado un modelo de la aparición y ubicación de los centros primarios de osificación en la calvaria. Este es el primer modelo computacional que determina la ubicación de estas estructuras óseas del cráneo. Se describe un modelo de reacción-difusión de dos moléculas (BMP y Noggins) cuyo comportamiento es del tipo activador-sustrato y su solución produce patrones de Turing, que representan los centros primarios de osificación. Una vez más, el uso de ecuaciones de este tipo posibilita la explicación de fenómenos de morfogénesis antes no dilucidados por otro tipo de teorías, en este caso, teorías de osificación del cráneo. Este tema es de constante investigación, especialmente en la medicina ortopédica y pediátrica.
REFERENCIAS (EN ESTE ARTÍCULO)
Gruber D. Pediatric Skull Base Surgery: Embryology and Developmental Anatomy. Pediatr Neurosurg. 2003;38:2-8.
Sadler TW. Langman's medical embriology, 9th edition. Baltimore, Maryland: Ed. Lippincott Williams and Wilkins; 2010.
Holleville N, Quilhac A, Bontoux M, Monsoro-Burq AH. BMP signals regulate Dlx5 during early avian skull development. Dev Biol. 2003;257(1):177-89.
Holleville N, Matéos S, Bontoux M, Bollerot K, Monsoro-Burq AH. Dlx5 drives Runx2 expression and osteogenic differentiation in developing cranial suture mesenchyme. Dev Biol. 2007;304(2):860-74.
Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM. Tissue origins and interactions in the mammalian skull vault. Dev Biol. 2002 Jan 1;241(1):106-16.
Tortora GJ, Derrickson B. Principles of anatomy and physiology. 11th Ed. Danvers, MA, USA: Ed. John Wiley and Sons; 2006.
Tubbs RS, Bosmia AN, Cohen-Gadol A. The human calvaria: a review of embriology, anatomy, pathology, and molecular development. Childs Nerv Syst. 2012 Apr;28(4):23-31.
Zhu W, Kim J, Cheng C, Rawlins BA, Boachie-Adjei O, Crystal RG, et al. Noggin regulation of bone morphogenetic protein (BMP) 2/7 heterodimer activity in vitro. Bone. 2006;39(1):61-71.
Walsh DW, Godson C, Brazil DP, Martin F. Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol. 2010;20(5):244-56.
Plikus MV, Zeichner-David M, Mayer JA, Reyna J, Bringas P, Thewissen JG, et al. Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity. Evol Dev.2005;7(5):440-57.
Murray JD. Parameter space for turing instability in reaction diffusion mechanisms: a comparison of models. J Theor Biol. 1982;98(1):143-63.
Ruch JV, Lesot H, Begue-Kirn C. Odontoblast differentiation. Int J Dev Biol. 1995; 39(1):51-68.
Schmitt R, Ruch JV. In vitro synchronization of embryonic mouse incisor preodontoblasts and preameloblasts: repercussions on terminal differentiation. Eur J Oral Sci. 2000;108(4):311-9.
Weinmann JP, Sicher H. Bone and bone: fundamentals of bone biology. St Louis, USA: The C.V. Moshy Company; 1947.
Scott JH. The growth in width of the facial skeleton. American Journal of Orthodontics. 1957;43(5):366-71.
Scott JH. The analysis of facial growth from fetal life to adulthhood. American Journal Orthodontics. 1963;33(2):110-13.
Moss ML. The primacy of functional matrices in orofacial growth. Dent Pract Dent Rec. 1968 Oct;19(2):65-73.
Moss ML. The functional matrix hypothesis revisited. 2. The role of an osseous connected cellular network. American Journal of Orthodontics and dentofacial orthopedics. 1997;112(2):221-26.
Van Limborgh J. The role of genetic and local environmental factors in the control of postnatal craniofacial morphogenesis. Acta Morphol Neerl Scand. 1972 Oct;10(1):37-47.
Delezoide AL, Benoist-Lasselin C, Legeai-Mallet L, Le Merrer M, Munnich A, Vekemans M, et al. Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech Dev. 1998 Sep;77(1):19-30.
Matsumura G, England MA, Uchiumi T, Kodama G. The fusion of ossification centres in the cartilaginous and membranous parts of the occipital squama in human fetuses. Journal Anatomy. 1994;185:295-300.
Shapiro R, Robinson F. Embryogenesis of the human occipital bone. American Journal of Roentgenology. 1976;126(5):1063-68.
Garzón-Alvarado DA, García-Aznar JM, Doblaré M. Appearance and location of secondary ossification centers may be explained by a reaction-diffusion mechanism. Comput Biol Med. 2009;39(6):554-61.