2012, Number 3
<< Back Next >>
Rev Cubana Invest Bioméd 2012; 31 (3)
Preliminary electromechanical formulation for bone formation in a remodeling process
Ramírez MAM, Garzón-Alvarado DA
Language: Spanish
References: 40
Page: 278-289
PDF size: 101.01 Kb.
ABSTRACT
A bone remodeling model is proposed which takes account of mechanical and electrical stimuli. Under these assumptions, a mass distribution is obtained which depends on mechanical and electrical loads. The paper reveals the importance of the electric field in the remodeling process, and proposes to quantify its effects with a view to obtaining a clinically applicable model.
REFERENCES
Ganong WF, William F. Fisiologia Médica. México DF: El Manual Moderno; 2006. p. 373-86.
Cowin SC. Bone mechanics handbook. USA: CRC press; 2001.
Jacobs CR, Simo JC, Beaupre GS, Carter DR. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. Journal of biomechanics. 1997;30:603-13.
Weinans H, Huiskes R, Grootenboer H. The behavior of adaptive bone-remodeling simulation models. Journal of biomechanics. 1992;25:1425-41.
Wolff J. Das gesetz der transformation der knochen. Berlin: Hirschwald; 1892. p. 1-139.
Frost HM. The laws of bone structure. Springfield, IL: Charles C Thomas; 1964.
Frost HM. Mathematical elements of lamellar bone remodeling. Springfield, IL: Charles C Thomas; 1964.
Frost HM. Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcified Tissue International. 1988;42:145-56.
Pauwels F. Gesammelte abhandlungen zur funktionellen anatomie des bewegungsapparates. Berlín: Springer-Verlag; 1965. 183-96.
Kummer B. Biomechanics of bone: Mechanical properties, functional structure, functional adaptation. En: Fung YC, Perrone N, AnlicKer M (eds.) Biomechanics: Its foundation and objectives. Englewood Cliffs (N.J.): Prentice-Hall, 1972. p. 237-71.
Cowin S. Wolffís law of trabecular architecture at remodeling equilibrium. Journal of biomechanical engineering. 1986;108:83.
Cowin S, Hegedus D. Bone remodeling I: theory of adaptive elasticity. Journal of Elasticity. 1976;6:313-26.
Cowin S, Nachlinger RR. Bone remodeling III: uniqueness and stability in adaptive elasticity theory. Journal of Elasticity. 1978;8:285-95.
Hegedus D, Cowin S. Bone remodeling II: small strain adaptive elasticity. Journal of Elasticity. 1976;6:337-52.
Gupta S. New AMR, Taylor M. Bone remodelling inside a cemented resurfaced femoral head. Clinical Biomechanics. 2006;21:594-602.
Stülpner, M., Reddy, B., Starke, G. & Spirakis, A. A three-dimensional finite analysis of adaptive remodelling in the proximal femur. Journal of biomechanics. 1997;30;1063-66.
Jonkers I, Sauwen N, Lenaerts G, Mulier M, Van de Perre G, Jaecques S. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement. Journal of biomechanics. 2008;41:3405-13.
García J, Doblaré M, Cegoñino J. Bone remodelling simulation: a tool for implant design. Computational materials science. 2002;25:100-114.
Lian Z, Guan H, Ivanovski S, Loo YC, Johnson NW, Zhang H. Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant. International journal of oral and maxillofacial surgery. 2010;39:690-98.
Martin R. Targeted bone remodeling involves BMU steering as well as activation. Bone. 2007;40:1574-80.
Hernández C, Hazelwood S, Martin R. The relationship between basic multicellular unit activation and origination in cancellous bone. Bone. 1999;25:585-87.
Taylor D, Tilmans A. Stress intensity variations in bone microcracks during the repair process. Journal of theoretical biology. 2004;229:169-77.
Hernandez C, Beaupre,G, Carter D. A theoretical analysis of the changes in basic multicellular unit activity at menopause. Bone. 2003;32:357-63.
Peterson MC, Riggs MM. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone. 2010;46:49-63.
Buenzli PR, Pivonka P, Smith DW. Spatio-temporal structure of cell distribution in cortical bone multicellular units: a mathematical model. Bone. 2011; 48(4):918-26.
Ramtani S. Electro-mechanics of bone remodelling. International Journal of Engineering Science. 2008;46:1173-82.
Demiray H, Dost S. The effect of quadrupole on bone remodeling. International Journal of Engineering Science. 1996;34:257-68.
Fukada E. Yasuda I. On the piezoelectric effect of bone. J Phys Soc Japan. 1957;12:1158-62.
Aschero G, Gizdulich P, Mango F, Romano S. Converse piezoelectric effect detected in fresh cow femur bone. Journal of biomechanics. 1996;29:1169-74.
Beck BR, Qin Y, Rubin C, McLeod K, Otter M. The relationship of streaming potential magnitude to strain and periosteal modeling. Medicine & Science in Sports & Exercise. 1997;29(5):S98.
Gross D, Williams WS. Streaming potential and the electromechanical response of physiologically-moist bone. Journal of biomechanics. 1982;15:277-95.
Hung C, Allen F, Pollack S, Brighton C. What is the role of the convective current density in the real-time calcium response of cultured bone cells to fluid flow? Journal of biomechanics. 1996;29:1403-09.
Johnson MW, Chakkalakal DA, Harper RA, Katz JL. Comparison of the electromechanical effects in wet and dry bone. Journal of biomechanics. 1980;13;437-42.
Qu CY, Yu SW. The damage and healing of bone in the disuse state under mechanical and electro-magnetic loadings. Procedia Engineering. 2011;10:171-76.
Wang E, Zhao M. Regulation of tissue repair and regeneration by electric fields. Chinese Journal of Traumatology (English Edition). 2010;13:55-61.
Demiray H. Electro-mechanical remodelling of bones. International Journal of Engineering Science. 1983;21:1117-26.
Huang CP, Chen XM, Chen ZQ. Osteocyte: the impresario in the electrical stimulation for bone fracture healing. Medical hypotheses. 2008;70:287-90.
Qu C, Qin QH, Kang Y. A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads. Biomaterials. 2006;27:4050-57 ().
Nackenhorst U. Numerical simulation of stress stimulated bone remodeling. Technische Mechanik. 1997;17:31-40.
Oñate E. Structural analysis with the finite element method. Linear statics. Barcelona: Springer Verlag; 2009. p. 5-250,