2012, Number 3
<< Back Next >>
Rev Cubana Invest Bioméd 2012; 31 (3)
Development of a biocomposite made up of tricalcium phosphate and chitosan to be used as bone substitute in an animal model
Arce GS, Valencia LC, Garzón-Alvarado DA
Language: Spanish
References: 18
Page: 268-277
PDF size: 84.42 Kb.
ABSTRACT
The research deals with the development of a biocomposite from a ceramic matrix and a polymer with the purpose of using it as bone filler. A mixture was made of the ceramic matrix, tricalcium phosphate Ca (OH)2 and chitosan, a polymer of natural origin. The mixtures underwent preliminary testing to choose 4 types of biocomposites (BC1, BC2, BC3, BC4) with varying proportions of ceramic matrix elements. The biocomposite was prepared at a pH between 6.5 and 8.5. Drying time ranged between 7 and 20 minutes. Optimal samples were chosen and their mechanical properties analyzed by means of compression resistance testing. PH measurements showed values between 7.05 and 7.6, and drying times ranged between 7 and 15 minutes. The paste remained at a constant temperature of 25 ºC and maintained molding consistency. These properties are required for use as bone substitute. The sample exhibiting the best pH, temperature and drying time values was chosen for implantation in rabbit tibiae to verify the histological response after 60 days.
REFERENCES
Estrada C, Paz AC, López LE. Ingeniería de tejido óseo: Consideraciones básicas. Revista EIA (Escuela de Ingeniería de Antioquia). 2006;(5):93-100.
Ricci JL, Alexander H, Nadkarni P, Hawkins M, Turner J, Rosenblum S, et al. Biological mechanisms of malcium sulfate replacement by bone. En: Bone Engineering, Davies JE, ed. Toronto, Ont. Canada: Em2 Inc; 2000. Cap. 30. p. 332-44.
Jansen JA, Vercaigne S, Hulshoff G, Corten FGA, Brugge PJ, Naert I, et al. The effect of Surface Roughness and Calcium Phosphate Coating on Bone Regenerative Implant Surfaces. En: Bone Engineering. Toronto: Editorial Em2 Inc.; 2000. Cap. 31. p. 345-57.
Serna L, Rodríguez A, Alban F. Ácido poliláctico (PLA): Propiedades y Aplicaciones. Ingeniería y Competitividad, 2003;5 (1).
Batchelor, Andrew W. Service Characteristics of Biomedical Materials and Implants (Series on Biomaterials and Bioengineering, Volume 3). Singapore: Imperial College Press; 2004. p. 183.
Shoufeng Yang, Kah-Fai Leong, Zhaohui Du, Chee-Kai Chua. The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors. Tissue Engineering. 2001; 7(6): 679-689.
Byung-Soo K, Mooney DJ. Development of biocompatible synthetic extra cellular matrices for tissue engineering. Trend in Biotechnology. 1998;16(5): 224-230.
Anders Linde. Per. Alberius. Christer Dahlin, et al. Osteopromotion: A Soft. Tissue Exclusión Principle Using a Membrane for Bone Healing and Bone Neogenesis. J periodontal. 1993;64:1116-28.
Qu Y, Wang P, Man Y, Li Y, Zuo Y, Li J. Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane. Int J Nanomedicine. 2010 Aug 9;5:429-35.
10.Temenoff JS, Lu l, Mikos AG. Bone-Tissue Engineering Using Synthetic Biodegradable Polymer Scaffolds. Editorial Em2 Incorporated. Toronto 2000. p. 454-61.
Laurencin CT, Lu HH. Polymer-Ceramic Composites for Bone-Tissue Engineering. Bone Engineering. Em Squared Incorporated. Toronto 2000. p. 462-72.
Benavides Cuéllar M. Quitina-quitosana: los polimeros del futuro. Informe del Servicio Nacional de Aprendizaje (SENA). Bogotá: Editorial SENA. CDT ASTIN; 2002. p. 7.
Prudden JF, Miguel P, Handson P, Friedrich L, Balassa L. The discovery of a potent pure chemical wound-healing accelerator. Amer J Surg. 1970;119:560-64.
Hin Teoh S. Engineering Materials for Biomedical Applications. Singapore: World Scientific Publishing Company, Incorporated; 2004. p. 330.
Hua L, Hong L, Wenjun Ch, Yuan Y, Minying Z, Changren Z. Novel injectable calciumphosphate/chitosan composites for bone substitute materials. Acta Biomaterialia. 2006; 2(5):557-65.
González Torres M. Preparación y caracterización de cementos de hidroxiapatita con alginato. Ciudad de La Habana: Universidad de La Habana, Centro de Biomateriales Facultad de Química; 2004.
Valencia Llano CH. Descripción de cambios histológicos en respuesta a una matriz de acido poliláctico implantada en tibias de conejo. Revista Odontos. 2007; 30:11-13.
Gutiérrez Ospina L, Montenegro Rosero M. Estudio de factibilidad técnica para la fabricación de cementos óseos acrílicos con aplicación en biomateriales. Universidad del Valle, Facultad de Ingeniería. Escuela de Ingeniería de materiales. Trabajo de Grado. Santiago de Cali. 2006.