2012, Number 4
<< Back Next >>
Rev Mex Anest 2012; 35 (4)
Clinical application of the metabolic therapy in ischemic heart disease
Luna-Ortiz P, Rojas-Pérez E, Micheli A, Flores P, Martínez-Rosas M
Language: Spanish
References: 118
Page: 255-274
PDF size: 344.06 Kb.
ABSTRACT
Metabolic therapy is based on the use of drugs which inhibit the fatty acids oxidation and promote glucose oxidation. Ischemic heart disease is cause of angina, acute myocardial infarction and heart failure. The heart is an organ with a very high energy demand which is preferably obtained from the beta-oxidation of fatty acids which provides 60-80% of the ATP production, while the remainder is obtained from the oxidation of carbohydrate (glucose and lactate) and from oxidation of ketone bodies. In condition of myocardial ischemia the metabolism of energy substrates is altered and contractile function is impaired. During ischemia, glycolysis takes a great importance due to their capacity to generate ATP in the absence of oxygen, but has the disadvantage of lactate and proton accumulation, which may reduces the cardiac efficiency. There are drugs that promoting reduction of fatty acid utilization and increasing oxidation of glucose to improve cardiac function due to more efficient use of oxygen in conditions of hypoxia. This review presents the basis for the use of pharmacological agents used in therapy that can modulate energy metabolism of the heart to optimize the use of substrates and decrease the deleterious consequences of ischemia. The experimental and clinical evidence of the benefits of using this therapy is also presented.
REFERENCES
Opie LH. Heart physiology: from cell to circulation. Philadelphia: Lippincott Williams & Wilkins; 2004.
Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, et al. Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation 2012;125:e2-e220.
Lam A, Lopaschuk GD. Anti-anginal effects of partial fatty acid oxidation inhibitors. Curr Opin Pharmacol 2007;7:179-185.
Ferrari R, Ceconi C, Guardigli G. Pathophysiological role of heart rate: from ischaemia to left ventricular dysfunction. Eur Heart J Suppl 2008;10: F7-F10 doi:10.1093/eurheartj/sun020
Knaapen P, Germans T, Knuuti J, Paulus WJ, Dijkmans PA, Allaart CP, et al. Myocardial energetics and efficiency: current status of the noninvasive approach. Circulation 2007;115:918-927.
Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev 2002;7: 115-130.
Liedlke AJ. Alteration in carbohydrates and lipid metabolism in acute ischemic heart. Prog Cardiovasc Dis 1981;23:321-326.
Stanley WC, Lopaschuk GD, Hall JL, McCormac JG. Regulation of myocardial carbohydrate metabolism under normal and ischemic condition. Potential for pharmacological interventions. Cardiovascular Research 1997;33:243-257.
Sun D, Nguyen N, deGrado TR, Schwaiger M, Brosius FC. Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocyte. Circulation 1994;89:793-798.
Van Wylen DG, Willis J, Sodhi J, et al. Cardiac micro dyalisis to estimate intersticial adenosine and coronary blood flow. Am J Phy 1990;258:H1642-1649.
Crea F, Gaspardont F. New look to old symptoms; angina pectoris. Circulation 1997;96:3766-3773.
Fabiato A, Fabiato F. Effect of pH on the myofilaments and the sarcoplasmic reticulum of skinned cell from cardiac and skeletal muscles. J Physiol 1978;276:233-255.
Murphy E, Perlman M, London RE, et al. Amiloride delays the ischemia induced rise in cytosolic free calcium. Circulation Res 1991;68:1250-1258.
Glatz JF, Luiken JJ, Bonen A. Involvement of membrane associated proteins in the acute regulation of cellular fatty acid uptake. J MolNeurosci 2001;16:123-132.
Kerner J, Hoppel C. Fatty acid import into mitochondria. Biochim Biophys Acta 2000;1486:1-17.
Kornberg HL. Anaplerotic sequences and their role in metabolism. In: Campbell PN, Marshall RD. Eds. Essays in biochemistry. London: Academic Press 1966:1-31.
Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 2002;277:30409-30412.
Gibala MJ, Young ME, Taegtmeyer H. Anaplerosis of the citric acid cycle: role in energy metabolism of heart and skeletal muscle. Acta Physiol Scand 2000;168:657-665.
Russell RR III, Taegtmeyer H. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. J Clin Invest 1991;87:384-390.
Russell RR III, Taegtmeyer H. Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate. Am J Physiol Heart Circ Physiol 1991;261:H1756-H1762.
Des Rosiers C, Labarthe L, Lloyd SG, Chatham JC. Cardiac anaplerosis in health and disease: food for thought. Cardiovascular Research 2011;90:210-219.
Lloyds S, Brock C, Chatham JC. Differential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart. Am J Physiol Heart Circ Physiol 2003;285:H163-H172.
Sundqvist KE, Vuorinen KH, Peuhkirinen KJ, Hassinen IE, Metabolic effects of propionate, hexanoate and propionylcarnitine in normoxia, ischemia and reperfusion. Does an anaplerotic substrate protect the ischaemic myocardium? Eur Heart 1994;15:561-570.
Khogali SE, Harper AA, Lyall JA, Rennie MJ. Effects of L-glutamine on post-ischaemic cardiac function. Protection and rescue. J Moll Cell Cardiol 1998;30:819-827.
Cohen DM, Guthrie PH, Gao X, Sakai R, Taegtmeyer H. Glutamine cycling in isolated working rat heart. Am J Physiol Endocrinol Metab 2003;285:E1312-E1316.
Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle Function. The Journal of Biological Chemistry 2002;277:30409-30412.
Mudd JO, Kass DA. Takling heart failure in the twenty-first century. Nature 2008;451:919-928.
Goulston A. West indian cane sugar in the treatment of certain forms of heart diseases. BMJ 1912;ii:693-695.
Sodi-Pallares D, Testelli MR, Fishleder BL, et al. Effects of an intravenous infusion of a potassium-glucose-insulin solution on the electrocardiographic signs of myocardial infarction. A preliminary clinical report. Am J Cardiol 1962;9:166-181.
Oliver MF, Jurien VA, Greenwood TW. Relation between serum free fatty acids and arrhythmias and death after acute myocardial infarction. Lancet 1968;1:710-715.
Pauly DF, Pepine CJ. Ischemic heart disease: metabolic approaches to management. Clin Cardiol 2004;27:439-441.
Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 2000;86:580–588.
Stanley WC. Cardiac energetics during ischemia and the rationale for metabolic interventions. Coron Artery Dis 2001;12:S3-7.
34 Lopaschuck GD. Optimizing cardiac energy metabolism: how can fatty acid and carbohydrate metabolism be manipulated? Coron Artery Dis 2001;12:S8-11.
Fabiani JN, Ponzio O, Emerit I. Cardioprotective effect of trimetazidine during coronary artery graft surgery. J Cardiovasc Surg 1992;33:486-91.
Kober B, Buck T, Sievert H, Vallbracht C. Myocardial protection during percutaneous transluminal coronary angioplasty: Effect of trimetazidine. Eur Heart J 1992;13:1109-1115.
Brottier L, Barat JI, Combe C, Boussens B, Bonnet J, Bricaud H. Therapeutic value of a cardioprotective agent in patiens with severe ischaemic cardiomyopathy. Eur Heart J 1990;11:207-212.
38 Marzilli M, Kein WW. Efficacy and tolerability of trimetazidine in stable angina: A meta-analysis of randomized, double-blind, controlled trials. Cor Artery Dis 2003;14:171-179.
Harpey C, Clauser P, Labrid C, Freyria JL, Poirier JP. Trimetazidine, a cellular anti-ischemic agent. Cardiovasc Drug Rev 1986;6:292-312.
McCormack JG, Barr RL, Wolff AA, et al. Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation 1996;93:135-142.
Wolff AA. The MARISA Investigators and CV Therapeutics. MARISA: Monotherapy assessment of ranolazine in stable angina. J Am Coll Cardiol 2000;35:408a.
Chaitman BR, Pepine CJ, Parker JO, et al. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA 2004;291:309-316.
Wilson SR, Scirica BM, Braunwald E, Murphy SA, Karwatowska-Prokopczuk E, Buros JL, Chaitman BR, Morrow DA. Efficacy of ranolazine in patients with chronic Angina: Observations from the randomized, double-blind, placebo-controlled MERLIN-TIMI (Metabolic efficiency with ranolazine for less ischemia in non-ST-segment elevation acute coronary syndromes) 36 Trial. J Am Coll Cardiol 2009;53:1510-1516.
Scirica BM, Morrow DA, Hod H, Murphy SA, Belardinelli CM, Hedgepeth P, Molhoek FW, Verheugt BJ, Gersh CH, McCabe E. Braunwald, effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the metabolic efficiency with ranolazine for less ischemia in non ST-elevation acute coronary syndrome thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation 2007;116:1647-1652.
Lopaschuk GD, Wall SR, Olley PM, et al. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res 1988;63:1036-1043.
Schmidt-Schweda S, Holubarsch C. First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci (Lond) 2000;99:27-35.
Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 2004;25:634-641.
Killalea SM, Krum H. Systematic review of the efficacy and safety of perhexiline in the treatment of ischemic heart disease. Am J Cardiovasc Drugs 2001;1:193-204.
Cole PI, Beamer AD, McGowan N, Cantillon CO, Benfell K, Kelly RA, Hartley LH, Smith TW, Antman EM. Efficacy and safety of perhexiline maleate in refractory angina. Doble blind placebo-controlled clinical trial of a novel antianginal agent. Circulation 1990;81:1260-1270.
Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I, Maher AR, Kaur K, Taylor J, Henning A, Ashrafian H, Watkins H, Frenneaux M. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 2010;122:1562-1569.
Horowitz JD, Button IK, Wing L. Is perhexiline essential for the optimal management of angina pectoris? Aust N Z J Med 1995;25:111-113.
Willoughby SR, Stewart S, Chirkov YY, Kennedy JA, Holmes AS, Horowitz JD. Beneficial clinical effects of perhexiline in patients with stable angina pectoris and acute coronary syndromes are associated with potentiation of platelet responsiveness to nitric oxide. Eur Heart J 2002;23:1946-1954.
Neubauer S. The failing heart –an engine out of fuel. N Engl J Med 2007;356:1140-1151.
Opie LH. The glucose hypothesis: relation to acute myocardial ischaemia. J Mol Cell Cardiol 1970;1:107-115.
Jonassen AK, Aasum E, Riemersma RA, Mjøs OD, Larsen TS. Glucose–insulin–potassium reduces infarct size when administered during reperfusion. Cardiovasc Drugs Ther 2000;14:615-623.
Zhang NX, Zang YM, Huo JH, et al. Physiologically tolerable insulin reduces myocardial injury and improves cardiac functional recovery in myocardial ischemia/reperfusion dog. J Cardiovasc Pharmacol 2006;48:306-311.
Kloner RA, Przyklenk K, Shook T, Cannon CP. Protection conferred by preinfarct angina is manifest in the aged heart: evidence from the TIMI 4 Trial. J Thromb Thrombolysis 1998;6:89-92.
Fath-Ordoubadi F, Beatt KJ. Glucose–insulin–potassium therapy for treatment of acute myocardial infarction: an overview of randomized placebo-controlled trials. Circulation 1997;96:1152–1156.
Malmberg K, Ryde’n L, Hamsten A, Herlitz J, Waldenstro¨m A, Wedel H. Effects of insulin treatment on cause-specific one year mortality and morbidity in diabetic patients with acute myocardial infarction. DIGAMI Study Group. Diabetes Insulin-Glucose in Acute Myocardial Infarction. Eur Heart J 1996;17:1337-1344.
Díaz R, Paolasso EA, Piegas LS, et al. Metabolic modulation of acute myocardial infarction. The ECLA (Estudios Cardiologicos Latinoamerica) Collaborative Group. Circulation 1998;98:2227-2234.
Ceremuzynski L, Budaj A, Czepiel A, et al. Low-dose glucose–insulin–potassium is ineffective in acute myocardial infarction: results of a randomized multicenter Pol-GIK trial. Cardiovasc Drugs Ther 1999;13:191-200.
van der Horst IC, Zijlstra F, van’t Hof AW, et al., for the Zwolle Infarct Study Group. Glucose–insulin–potassium infusion in patients treated with primary angioplasty for acute myocardial infarction: the glucose–insulin–potassium study: a randomized trial. J Am Coll Cardiol 2003;42:784-791.
Timmer J, GIPS 2 Investigators. Glucose–Insulin–Potassium Study in patients with ST-segment elevation myocardial infarction without signs of heart failure. In: Late Breaking Clinical Trials III. American College of Cardiology Scientific Sessions; 2005; Orlando.
Quinn DW, Pagano D, Bonser RS, Rooney SJ, Graham TR, Wilson IC, Keogh BE, Towenend JN, Lewis ME, Nightingale P. Improved myocardial protection during coronary artery surgery with glucose-insulin-potassium: a randomized controlled trial. J Thorac Cardiovasc Surg 2006;131:34-42.
Bothe W, Olschewki M, Beyersdorf F, Doenst T. Glucose-insulin-potassium in cardiac surgery: a meta-analysis. Ann Thorac Surg 2004;78:1650-1657.
Lerch R, Tamm C, Papageogiou I, Benzi RH. Myocardial fatty acid oxidation during ischemia and reperfusion. Mol Cell Biochem 1992;116:103-109.
Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 1974;36:413-459.
Dennis SC, Gevers W, Opie LH. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol 1991;23:1077-1086.
Apstein CS, Taegtmeyer H. Glucose-insulin-potassium in acute myocardial infarction: the time has come for a large prospective trial. Circulation 1997;96:1152-1156.
Bertrand L, Horman S, Beauloye C, Vanoverschelde JL. Insulin signaling in the heart. Cardiovasc Res 2008;79:238-248.
Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev 2007;12:1382-4147.
Ye Fan, An-Mei Zhang, Yin bin Xiao, Yu-Guo Weng, Roland Hetzer. Glucose-insulin-potasium therapy in adult patients undergoing cardiac surgery: a meta-analysis. Eur J Cardio-thoracic Surgery 2011;40:192-199.
Howell NJ, Ashrafian H, Drury NE, Ranasinghe AM, Contractor H, Isackson H, Calvert M, Williams LK, Freemantle N, Quinn DW, Green D, Frenneaux M, Bonser RS, Mascaro JG, Graham TR, Rooney SJ, Wilson IC, Pagano D. Glucose-insulin-potassium reduces the incidence of low cardiac output episodes after aortic valve replacement for aortic stenosis in patients with left ventricular hypertrophy: results from the hypertrophy, insulin, glucose, and electrolytes (HINGE) trial. Circulation 2011;123:170-177.
Lewandowski ED, White LT. Pyruvate dehydrogenase influences postischemic heart function. Circulation 1995;91:2071-2079.
Carregal M, Varela A, Dalamon V, Sacks S, Savino EA. Beneficial effects of oxfenicine on the hypoxic rat atria. Arch Physiol Biochem 1995;103:45-49.
Siliprandi N, Di Lisa F, Menabo R. Propionyl-L-carnitine: biochemical significance and possible role in cardiac metabolism. Cardiovasc Drugs Ther 1991;5:11-15.
Arnesian MA. Carnitine and its derivatives in cardiovascular disease. Prog Cardiovasc Dis 1997;40:265-286.
Schonekess BO, Allard MF, Lopaschuk GD. Propionyl L-carnitine improvement of hypertrophied heart function is accompanied by an increase in carhohydrate oxidation. Circ Res 1995;77:726-734.
Scholte HR, Rodriges-Pereira R, de Jonge PC, et al. Primary carnitine deficiency. J Clin Chem Clin Biochem 1990;28:351-357.
Russel RR 3rd, Mommessin JI, Taegtmeyer H. Propionyl-L-carnitine-mediated improvement in contractile function of rat hearts oxidizing acetoacetato. Am J Physiol 1995;268:H441-447.
Rizos I. Three-year survival of patients with heart failure caused by dilated cardiomyopathy and L-carnitine administration. Am Heart J 2000;139:S120-123.
Folkers K, Langsjoen P, Langsjoen PH. Therapy with coenzyme Q10 of patients in heart failure who are eligible or ineligible for a transplant. Biochem Biophys Res Commun 1992;182:247-253.
Spagnoli LG, Corsi M, Villaschi S, Palmieri G, Maccari F. Myocardial carnitine deficiency in acute myocardial infarction. Lancet 1982;1:1419-1420.
Arsenian MA, New PS, Cafasso CM. Safety, tolerability, and efficacy of a glucose–insulin–potassium–magnesium–carnitine solution in acute myocardial infarction. Am J Cardiol 1996;78:476-479.
Chido A, Gaglione A, Musci S, et al. Hemodynamic study of intravenous propionyl-L-carnitine in patients with ischemic heart disease and normal left ventricular function. Cardiovasc Drugs Ther 1991;5:107-111.
Bartels GL, Remme WJ, Pillay M, et al. Acute improvement of cardiac function with intravenous L-propionylcarnitine in humans. J Cardiovasc Pharmacol 1992;20:157-164.
Taegtmeyer H, Harinstein ME, Gheorghiade M. More than bricks and mortar: Comments on protein and aminoacid metabolism in the heart. Am J Cardiol 2008;101:3E-7E.
Kalantar-Zadeh K, Block G, Horwich T, Fonarow GC. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J Am Coll Cardiol 2004;43:1439-1444.
Young VR, Ajami AM. Glutamate: an amino acid of particular distinction. J Nutr 2000;130:892S-900S.
Kimose HH, Helligso P, Randsbaek F, Kim Y, Botker HE, Hansen SB, et al. Improved recovery after cold crystalloid cardioplegia using low-dose glutamate enrichment during reperfusion after aortic unclamping: a study in isolated blood-perfused pig hearts. Thorac Cardiovasc Surg 1996;44:118-125.
Pereda D, Castella M, Pomar JL, Cartana R, Josa M, Barriuso C, et al. Elective cardiac surgery using Celsior or St. Thomas No. 2 solution: a prospective, single-center, randomized pilot study. Eur J Cardiothorac Surg 2007;32:501-506.
Mudge GH Jr, Mills RM Jr, Taegtmeyer H, Gorlin R, Lesch M. Alterations of myocardial amino acid metabolism in chronic ischemic heart disease. J Clin Invest 1976;58:1185-1192.
Tsai PJ, Huang PC. Circadian variations in plasma and erythrocyte glutamate concentrations in adult men consuming a diet with and without added monosodium glutamate. J Nutr 2000;130:1002S-1004S.
Schaumburg HH, Byck R, Gerstl R, Mashman JH. Monosodium L-glutamate: its pharmacology and role in the Chinese restaurant syndrome. Science 1969;163:826–828.
Thomassen A, Nielsen TT, Bagger JP, Henningsen P. Effects of intravenous glutamate on substrate availability and utilization across the human heart and leg. Metabolism 1991;40:378-384.
Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci USA 2000;97:2826-2831.
Wiesner RJ, Deussen A, Borst M, Schrader J, Grieshaber MK. Glutamate degradation in the ischemic dog heart: contribution to anaerobic energy production. J Mol Cell Cardiol 1989;21:49-59.
Gincel D, Shoshan-Barmatz V. Glutamate interacts with VDAC and modulates opening of the mitochondrial permeability transition pore. J Bioenerg Biomembr 2004;36:179-186.
Kovacevic Z, McGivan JD. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 1983;63: 547-605.
Liu J, Marchase RB, Chatham JC. Glutamine-induced protection of isolated rat heart from ischemia/reperfusion injury is mediated via the hexosamine biosynthesis pathway and increased protein O-GlcNAc levels. J Mol Cell Cardiol 2007;42:177-185.
Laczy B, Hill BG, Wang K, Paterson AJ, White CR, Xing D, et al. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol 2009;296:H13–H28.
Ngoh GA, Facundo HT, Zafir A, Jones SP. O-GlcNAc signaling in the cardiovascular system. Circ Res 2010;107:171–185.
Wischmeyer PE, Jayakar D, Williams U, Singleton KD, Riehm J, Bacha EA, et al. Single dose of glutamine enhances myocardial tissue metabolism, glutathione content, and improves myocardial function after ischemia-reperfusion injury. JPEN J Parenter Enteral Nutr 2003;27:396–403.
Tesis UNAM. Efecto de la glutamina agregada a la solución cardioplégica durante la cirugía cardíaca. No. 23456.
Crane FL, Sun IL, Crowe RA, Alcain FJ, Low H. Coenzime Q10, plasma membrane oxidase and growth control. Mol Aspects Med 1994;15:s1-11.
Villalba JM, Navarro F, Cordoba F, et al. Coenzyme Q reductase from liver plasma membrane: purification and role in trans-plasma-membrane electron transport. Proc Natl Acad Sci USA 1995;92:4887-4891.
Crane FL, Sun IL, Crowe RA, Alcain FJ, Low H. Coenzyme Q10, plasma membrane oxidase and growth control. Mol Aspects Med 1994;15:s1-11.
Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 2007;37:31-37.
Di Lisa F, Canton M. Menabo R, Dodoni G, Bernardi P. Mitochondria and reperfusion injury. The role of permeability transition. Basic Res Cardiol 2003;98:235-241.
Papucci L, Schiavone N, Witort E, et al. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 2003;278:28220-8
Muller C, Zimmer HG, Gross M, et al. Effects of ribose on cardiac adenine nucleotides in a donor model for heart transplantation. Eur J Med Res 1998;330:879-887.
Zimmer HG. The oxidative pentose phosphate pathway in the heart: regulation, physiological significance and clinical implications. Basic Res Cardiol 1992;87:3003-3116.
Teo KK, Yusuf S, Collins R, et al. Effects of intravenous magnesium in suspected acute myocardial infarction: overview of randomized trials. BMJ 1991;303:1499-1503.
Woods KL, Fletcher S, Roffe C, Haider Y. Intravenous magnesium sulphate in suspected acute myocardial infarction results of the second leicester intravenous magnesium intervention trial (LIMIT-2). Lancet 1992;339:1553-1558.
The magnesium in coronaries (MAGIC) trial investigators. early administration of intravenous magnesium to high-risk patients with acute myocardial infarction in the magnesium in coronaries (MAGIC) trial; a randomized controlled trial. Lancet 2002;360:1189-1196.
Fourth International Study of Infarct Survival Collaborative Group. ISIS-4: a randomized factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. Lancet 1995;345:669-685.
Beadle RM, Frenneaux M. Modification of myocardial substrate utilization: a new therapeutic paradigm in cardiovascular disease. Heart 2010;96:824-830.
Herman HP, Pieske B, Schwarzmuller E, Keul J, Just H, Hasenfus G. Haemodynamic effects of intracoronary pyruvate in patients with congestive heart failure: an open study. Lancet 1999;353:1321-1323.