2012, Number 3
<< Back Next >>
Rev Cubana Estomatol 2012; 49 (3)
Hypodontia and accessory navicular bone: an interesting syndromic association
Cantín M, Sandoval MC
Language: Spanish
References: 27
Page:
PDF size: 103.10 Kb.
ABSTRACT
Teeth are developed from many interactions between oral epithelium and mesenchymal cells. A number of genes are involved in tooth development, as well as in other organs, and upper and lower limbs. PAX9, a member of the transcriptional factor family, is one of the main drivers of this development, playing a key role in dental hypodontia and malformations in the lower limb bones. The aim of this report was to present the association between hypodontia and the accessory navicular bone based on a case report. This is a 18 years old female patient, who attended a dental clinic because she had acute pain in the 3.6 tooth and also pain on the left foot's inner area. The radiographic examination showed loss of the teeth 1.7, 2.7, 2.8, 3.8 and 4.8; and the presence of an accessory navicular bone in the left foot. It is interesting to suggest that this rare association, with clear dominant autosomal inheritance, might exist; since the dental agenesis and the presence of accessory navicular bone have similar prevalence, which could point to a new syndromic association probably related to the lack of PAX9.
REFERENCES
Bei M. Molecular genetics of tooth development. Curr Opin Genet Dev. 2009;19:504-10.
Wang XP, Fan J. Molecular genetics of supernumerary tooth formation. Genesis. 2011;49:261-77.
Pereira TV, Salzano FM, Mostowska A, Trzeciak WH, Ruiz-Linares A, Chies JA, et al. Natural selection and molecular evolution in primate PAX9 gene, a major determinant of tooth development. Proc Natl Acad Sci USA. 2006;103:5676-81.
Neubüser A, Koseki H, Balling R. Characterization and developmental expression of Pax9, a paired-box-containing gene related to Pax1. Dev Biol. 1995;170:701-16.
Peters H, Neubüser A, Kratochwil K, Balling R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998;12:2735-47.
Mues G, Kapadia H, Wang Y, D'Souza RN. Genetics and human malformations. J Craniofac Surg. 2009;20:1652-4.
Kamamoto M, Machida J, Yamaguchi S, Kimura M, Ono T, Jezewski PA, Higashi Y, Nakayama A, Shimozato K, Tokita Y. Clinical and functional data implicate the Arg(151)Ser variant of MSX1 in familial hypodontia. Eur J Hum Genet. 2011;19:844-50.
Bergendal B, Klar J, Stecksén-Blicks C, Norderyd J, Dahl N. Isolated oligodontia associated with mutations in EDARADD, AXIN2, MSX1, and PAX9 genes. Am J Med Genet A. 2011;155A:1616-22.
Pinho T, Maciel P, Lemos C, Sousa A. Familial aggregation of maxillary lateral incisor agenesis. J Dent Res. 2010;89:621-5.
Visinoni AF, Lisboa-Costa T, Pagnan NA, Chautard-Freire-Maia EA. Ectodermal dysplasias: clinical and molecular review. Am J Med Genet A. 2009;149A:1980-2002.
Pallotta R, Fusilli P. Unknown syndrome: peculiar face, severe hypodontia of permanent teeth, and precocious choroid calcifications. J Med Genet. 1998;35:435-7.
Díaz-Pérez R, Echaverry-Navarrete RA. Agenesia en dentición permanente. Rev Salud Pública. 2009;11:961-9.
Goya HA, Tanaka S, Maeda T, Akimoto Y. An orthopantomographic study of hypodontia in permanent teeth of Japanese pediatric patients. J Oral Sci. 2008;50:143-50.
Garib DG, Peck S, Gomes SC. Increased occurrence of dental anomalies associated with second-premolar agenesis. Angle Orthod. 2009 May;79(3):436-41.
Vastardis H. The genetics of human tooth agenesis: new discoveries for understanding dental anomalies. Am J Orthod Dentofacial Orthop. 2000; 117:650-6.
Neubüser A, Peters H, Balling R, Martin GR. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell. 1997;90:247-55.
Salazar Fernández MA, Romero de León E, Menchaca Flores PN, Torre Martínez HHH, Sepúlveda Infante R. Síndrome de ectrodactilia, displasia ectodérmica y labio-paladar hendidos. Rev Cubana Estomatol. 47(2):236-42. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75072010000200012&lng=es
Chiu NT, Jou IM, Lee BF, Yao WJ, Tu DG, Wu PS. Symptomatic and asymptomatic accessory navicular bones: findings of Tc-99m MDP bone scintigraphy. Clin Radiol. 2000;55:353-5.
Geist ES. The accessory scaphoid bone. J Bone Joint Surg Am. 1925;7:570-4.
Romanowski CAJ, Barrington NA. The accessory navicular-an important cause of medial foot pain. Clin Radiol. 1992;46:261-4.
Kiter E, Erduran M, Gunal I. Inheritance of the accessory navicular bone. Arch Orthop Trauma Surg. 2000;120:582-3.
Leonard ZC, Fortin PT. Adolescent accessory navicular. Foot Ankle Clin. 2010;15:337-47.
Monahan JJ. The human pre-hallux. Am J Med Sci. 1920;160:708-20.
Cobey MC, Cobey JC. A true prehallux. J Bone Joint Surg Am. 1966;48:953-4.
McKusick VA. Mendelian inheritance in man. Baltimore: The Johns Hopkins University Press, 1994.
Keles Coskun N, Arican RY, Utuk A, Ozcanli H, Sindel T. The incidence of accessory navicular bone types in Turkish subjects. Surg Radiol Anat. 2009;31:675-9.
Tallón-Walton V, Manzanares-Céspedes MC, Arte S, Carvalho-Lobato P, Valdivia-Gandur I, Garcia-Susperregui A, et al. Identification of a novel mutation in the PAX9 gene in a family affected by oligodontia and other dental anomalies. Eur J Oral Sci. 2007;115:427-32.