2012, Number 5
<< Back Next >>
Salud Mental 2012; 35 (5)
Procesamiento central del dolor neuropático: una aproximación integrativa
Coffeen U, Simón K, Mercado F, Almanza A, Magis L, Jaimes O, Contreras B, Pellicer F
Language: Spanish
References: 66
Page: 367-374
PDF size: 133.09 Kb.
ABSTRACT
The term pain matrix refers to the structures and pathways in the central
nervous system that play a role in pain processing and integration.
For the last several years, our group has been studying the mechanisms
that are involved in the establishment of long-term pain.
Our research focus has been the study of the different nuclei and corticolimbic
pathways that are involved in the affective-cognitive component
of pain. In addition, we have also explored painful processes
and memory.
The pain matrix is constituted by the ventral tegmental area
(VTA), anterior cingulate cortex (ACC), and insular cortex, among others.
VTA is a predominantly dopaminergic area and has projections
to ACC and the insular cortex. Stimulation of this region can reduce
nociception, whereas its lesion has the opposite effect.
In the ACC, it has been studied how excitatory aminoacids, such
as glutamate, increase nociception while inhibitory ones decrease it.
Moreover, this cortex is associated with mechanisms of pain memory.
In this sense, we have seen that blocking cholinergic receptors diminishes
the acquisition of pain-related memories. Nociceptive stimuli
increase the expression of inhibitory muscarinic M2 receptors.
In relation with insular cortex, the focus of study has been on the
dopaminergic system. We have found that blocking dopaminergic D
2
receptors significantly reduces neuropathic nociception. In response
to an inflammatory process there is a decrease in the extracellular
levels of dopamine and in the expression of mRNA for excitatory dopamine
D
1 receptors, while there is an increase in mRNA expression
for inhibitory D
2 receptors.
Despite current progress in this research area, more studies are
needed in order to integrate the relationship among the different neurotransmission
systems. This will contribute to the proposal of novel
therapeutic alternatives to the conventional treatments for pain.
REFERENCES
Pellicer F, Ortega-Legaspi JM, López-Avila A, Coffeen U et al. Dopamine pathways and receptors in nociception and pain. Pharmacology Pain: IASP Press; 2010.
Oades RD, Halliday GM. Ventral tegmental (A10) system: neurobiology.1. Anatomy and connectivity. Brain Research 1987;434:117-165.
Sarkis D, Souteyrand JP, Albe-Fessard D. Self-stimulation in the ventral tegmental area suppresses self-mutilation in rats with forelimb deafferentiation. Neurosci Lett 1984;44:199-204.
Mayer DJ, Liebeskind JC. Pain reduction by focal electrical stimulation of the brain: an anatomical and behavioral analysis. Brain Res 1974;68:73-93.
Pellicer F, Torres-López E, Sotres-Bayón F, López-Avila A et al. The affective and cognitive dimension of nociception in an animal model: The role of the anterior cingulate cortex. En: Lucas A (ed.). Frontiers in pain research: Nova Publishers; 2006.
Thierry AM, Tassin JP, Blanc G, Glowinski J. Selective activation of mesocortical DA system by stress. Nature 1976;263:242-244.
Morgan MJ, Franklin KB. 6-Hydroxydopamine lesions of the ventral tegmentum abolish D-amphetamine and morphine analgesia in the formalin test but not in the tail flick test. Brain Research 1990;519:144-149.
Ma QP, Zhou Y, Han JS. Electroacupuncture accelerated the expression of c-Fos protooncogene in dopaminergic neurons in the ventral tegmental area of the rat. Int J Neurosci 1993;70:217-22.
Franklin KB. Analgesia and the neural substrate of reward. Neurosci Biobehav Rev 1989;13:149-154.
Saade NE, Atweh SF, Bahuth NB, Jabbur SJ. Augmentation of nociceptive reflexes and chronic deafferentation pain by chemical lesions of either dopaminergic terminals or midbrain dopaminergic neurons. Brain Research 1997;751:1-12.
López-Avila A, Rodriguez-Manzo G, Coffeen U, del Angel R et al. Selfinjury behaviour induced by intraplantar carrageenan infiltration: a model of tonic nociception. Brain Res Brain Res Protoc 2004;13:37-44.
Sotres-Bayón F, Torres-Lopez E, Lopez-Avila A, del Angel R et al. Lesion and electrical stimulation of the ventral tegmental area modify persistent nociceptive behavior in the rat. Brain Research 2001;898:342-349.
Burkey AR, Carstens E, Jasmin L. Dopamine reuptake inhibition in the rostral agranular insular cortex produces antinociception. J Neurosci 1999;19:4169-4179.
Papez JW. A proposed mechanism of emotion. Archives Neurology Psychiatry 1937;38:725-743.
Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. J Neurology 1995;118( Pt 1):279-306.
Vogt BA, Finch DM, Olson CR. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 1992;5:435-443.
Foltz E, White L. Pain “relief” by frontal cingulotomy. J Neurosurg 1962;19:98-100.
Domesick VB. Thalamic relationships of the medial cortex in the rat. Brain, Behavior Evolution 1972;6:457-483.
Krettek JE, Price JL. The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 1977;171:157-191.
Domesick VB. The fasciculus cinguli in the rat. Brain Res 1970;20:19-32.
Mantz J, Milla C, Glowinski J, Thierry AM. Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of evoked responses in the rat prefrontal cortex. Neuroscience 1988;27:517-526.
Sikes RW, Vogt BA. Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol 1992;68:1720-1732
Dostrovsky JO, Guilbaud G. Nociceptive responses in medial thalamus of the normal and arthritic rat. Pain 1990;40:93-104.
Rinaldi PC, Young RF, Albe-Fessard D, Chodakiewitz J. Spontaneous neuronal hyperactivity in the medial and intralaminar thalamic nuclei of patients with deafferentation pain. J Neurosurgery 1991;74:415-421.
Gigg J, Tan AM, Finch DM. Glutamatergic excitatory responses of anterior cingulate neurons to stimulation of the mediodorsal thalamus and their regulation by GABA: an in vivo iontophoretic study. Cereb Cortex 1992;2:477-484
Torres-López E, del Angel R, Pellicer F. Thalamic anteromedial and mediodorsal nuclei stimulation enhances the self-injury behavior induced by an inflammatory process in the rat. Analgesia 2000;5:67-73.
López-Avila A, Coffeen U, Ortega-Legaspi JM, del Angel R et al. Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex. Pain 2004;111:136-143.
Kornhuber J, Quack G, Danysz W, Jellinger K et al. Therapeutic brain concentration of the NMDA receptor antagonist amantadine. Neuropharmacology 1995;34:713-721.
Gordon I, Weizman R, Rehavi M. Modulatory effect of agents active in the presynaptic dopaminergic system on the striatal dopamine transporter. European J Pharmacology 1996;298:27-30.
Coffeen U, Lopez-Avila A, Pellicer F. Systemic amantadine diminishes inflammatory and neuropathic nociception in the rat. Salud Mental 2009;32:139-144.
Eisenberg E, Pud D. Can patients with chronic neuropathic pain be cured by acute administration of the NMDA receptor antagonist amantadine? Pain 1998;74:337-339.
Ortega-Legaspi JM, de Gortari P, Garduno-Gutierrez R, Amaya MI et al. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain. Molecular Pain 2011;7:97.
Nikolajsen L, Hansen CL, Nielsen J, Keller J et al. The effect of ketamine on phantom pain: a central neuropathic disorder maintained by peripheral input. Pain 1996;67:69-77.
Nasstrom J, Karlsson U, Berge OG. Systemic or intracerebroventricular injection of NMDA receptor antagonists attenuates the antinociceptive activity of intrathecally administered NMDA receptor antagonists. Brain Res 1993;623:47-55.
Pellicer F, Lopez-Avila A, Coffeen U, Manuel Ortega-Legaspi J et al. Taurine in the anterior cingulate cortex diminishes neuropathic nociception: a possible interaction with the glycine(A) receptor. European J Pain 2007;11:444-451.
Chapman CR. Limbic processes and the affective dimension of pain. Prog Brain Res 1996;110:63-81.
Drachman DA, Leavitt J. Human memory and the cholinergic system. A relationship to aging? Arch Neurol 1974;30:113-121.
Gaykema RP, Luiten PG, Nyakas C, Traber J. Cortical projection patterns of the medial septum-diagonal band complex. J Comp Neurol 1990;293:103-124.
Tohyama M, Takatsuji K. The acetylcholinergic system Atlas of neuroactive substances and their receptors in the rat: Oxford: Oxford University Press; 1998.
Farr SA, Uezu K, Creonte TA, Flood JF et al. Modulation of memory processing in the cingulate cortex of mice. Pharmacology Biochemistry Behavior 2000;65:363-368.
Ortega-Legaspi JM, Lopez-Avila A, Coffeen U, del Angel R et al. Scopolamine into the anterior cingulate cortex diminishes nociception in a neuropathic pain model in the rat: an interruption of ‘nociceptionrelated memory acquisition’? Eur J Pain 2003;7:425-429.
Ortega-Legaspi JM, Leon-Olea M, de Gortari P, Amaya MI et al. Expression of muscarinic M1 and M2 receptors in the anterior cingulate cortex associated with neuropathic pain. European J Pain 2010;14:901-910.
Binder DK, Schaller K, Clusmann H. The seminal contributions of Johann-Christian Reil to anatomy, physiology, and psychiatry. Neurosurgery 2007;61:1091-1096.
Augustine J. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Rev 1996;22:229–244.
Augustine JR. The insular lobe in primates including humans. Neurol Res 1985;7:2-10.
Coffeen U, Ortega-Legaspi JM, Pellicer F. Dopamine and pain modulation in the insular cortex. Dopamine: Functions, regulation and health effects. Nueva York: Nova Science Publishers Inc.; 2012.
Berthier M, Starkstein S, Leiguarda R. Asymbolia for pain: a sensorylimbic disconnection syndrome. Ann Neurol 1988;24:41-49.
Geschwind N. Disconnexion syndromes in animals and man. I. Brain 1965;88:237-294.
Barnett EM, Evans GD, Sun N, Perlman S et al. Anterograde tracing of trigeminal afferent pathways from the murine tooth pulp to cortex using herpes simplex virus type 1. J Neurosci 1995;15:2972-2984.
Ploghaus A, Tracey I, Gati J, Clare S et al. Dissociating pain from its anticipation in the human brain. Science 1999;284:1979-1981.
Porro CA, Baraldi P, Pagnoni G, Serafini M et al. Does Anticipation of Pain Affect Cortical Nociceptive Systems? J Neuroscience 2002;22:3206–3214.
Lenz FA, Gracely RH, Zirh AT, Romanoski AJ et al. The sensory-limbic model of pain memory. Pain Forum 1997;6:22-31.
Sawamoto N, Honda M, Okada T, Hanakawa T et al. Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. J Neurosci 2000;20:7438-7445.
Coffeen U, Manuel Ortega-Legaspi J, Lopez-Munoz FJ, Simon-Arceo K et al. Insular cortex lesion diminishes neuropathic and inflammatory pain-like behaviours. European J Pain 2011;15:132-138.
Ostrowsky K, Magnin M, Ryvlin P, Isnard J et al. Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb Cortex 2002;12:376-385.
Wood PB. Role of central dopamine in pain and analgesia. Expert Rev Neurother 2008;8:781-797.
Silva EG, Viana MA, Quagliato EM. Pain in Parkinson’s disease: analysis of 50 cases in a clinic of movement disorders. Arq Neuropsiquiatr 2008;66:26-29.
Ertas M, Sagduyu A, Arac N, Uludag B et al. Use of levodopa to relieve pain from painful symmetrical diabetic polyneuropathy. Pain 1998;75:257-259.
Mantz J, Thierry AM, Glowinski J. Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Research 1989;476:377-381.
Ohara P, Granato A, Moallem T, Wang B et al. Dopaminergic input to GABAergic neurons in the rostral agranular insular cortex of the rat. J Neurocytol 2003;32:131-141.
Burkey AR, Carstens E, Wenniger JJ, Tang J et al. An opioidergic cortical antinociception triggering site in the agranular insular cortex of the rat that contributes to morphine antinociception. J Neurosci 1996;16:6612-6623.
Burkey AR, Carstens E, Jasmin L. Dopamine reuptake inhibition in the rostral agranular insular cortex produces antinociception. J Neurosci 1999;19:4169-4179.
Hurd YL, Suzuki M, Sedvall GC. D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat 2001;22:127-137.
Coffeen U, Lopez-Avila A, Ortega-Legaspi JM, del Angel R et al. Dopamine receptors in the anterior insular cortex modulate long-term nociception in the rat. Eur J Pain 2008;12:535-543.
Coffeen U, Ortega-Legaspi JM, de Gortari P, Simon-Arceo K et al. Inflammatory nociception diminishes dopamine release and increases dopamine D2 receptor mRNA in the rat’s insular cortex. Mol Pain 2010;6:75.
Willis WD, Jr. Dorsal horn neurophysiology of pain. Ann N Y Acad Sci 1988;531:76-89.