2008, Number 3
<< Back
Rev Educ Bioquimica 2008; 27 (3)
El fantástico mundo de la proteína Bcl-2
Luna-López A, López- Diazguerrero NE, González-Puertos VY, Triana-Martínez F, Königsberg FM
Language: Spanish
References: 25
Page: 93-102
PDF size: 221.35 Kb.
ABSTRACT
Bcl-2 is a protein that has traditionally been related
to programmed cell death or apoptosis prevention.
However, in the last years other physiological
functions for this protein have been described, such
as oxidative stress damage prevention, calcium
homeostasis preservation and cell cycle regulation,
all these suggests that Bcl-2 is a molecule involved
in cell survival. In this paper some functions of Bcl-2
will be described, as well as the Bcl-2 promoter and
some mechanisms that regulate Bcl-2 expression.
REFERENCES
Tsujimoto Y, Bashir MM, Givol I, Cossman J, Jaffe E, Croce CM (1987) DNA rearrangements in human follicular lymphoma can involve the 5' or the 3' region of the bcl-2 gene. Proc Natl Acad Sci USA 84:1329-1331.
Borner C (1996) Diminished cell proliferation associated with the death-protective activity of Bcl-2. J Biol Chem 271:12695-12698.
Crescenzi E, Palumbo G, Brady HJ (2003) Bcl-2 activates a programme of premature senescence in human carcinoma cells. Biochem J 375:263-274.
López-Diazguerrero NE, López-Araiza H, Conde-Pérezprina JC, Bucio L, Cárdenas MC, Ventura JL, Covarrubias L, Gutiérrez-Ruiz MC, Zentella A, Königsberg M (2006) Bcl-2 protects against oxidative stress while inducing premature senescence. Free Radic Biol Med 40: 1161-1169.
Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324- 1337.
Youle RJ, Strasser A (2008) The Bcl-2 protein family: opposing activities that mediate cell death. Nature Rev. 9: 47-59.
Hockenbery DM, Oltavi Z, Ying X, Milliman C, Korsmeyer S. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241-251.
Lee M, Hyun DH, Marshall KA, Ellerby LM, Bredesen DE, Jenner P, Halliwell B (2001) Effect of overexpression of BCL-2 on cellular oxidative damage, nitric oxide production, antioxidant defences, and the proteasome. Free Radic Biol Med. 2001 31:1550-1559.
Steinman H (1993) The Bcl-2 oncoprotein functions as a pro-oxidant. J Biol Chem 270:3487-3490.
Degli-Esposti M, Hatzinisiriou I, Mclennan H (1999) Bcl-2 and mitochondrial oxygen radicals. J Biol Chem 274: 29831- 29837.
Deng G, Su J, Ivins K, Van Houten B, Cotman C (1999) Bcl-2 facilites recovery from DNA damage after oxidative stress. Exp Neurol 159:309-318.
Vairo G, Soos TJ, Upton TM, Zalvide J, DeCaprio JA, Ewen ME, Koff A, Adams JM (2000) Bcl-2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation. Mol Cell Biol 20: 4745-4753.
López-Diazguerrero, NE. Martínez Garduńo CM, Königsberg M (2005) La senescencia replicativa como una respuesta celular al estrés. REB 24: 47-53.
Hetz C, Glimcher L (2007) The daily job of night killers: alternative roles of the Bcl-2 family in organelle physiology. Trends Cell Biol 18:38-44.
Distelhorst CW, Shore GC (2004) Bcl-2 and calcium: controversy beneath the surface. Oncogene 23: 2875- 2880.
Hoetelmans RW (2004) Nuclear partners of Bcl-2: Bax and PML. DNA Cell Biol. 23:351-354.
Bredow S, Juri DE, Cardin K, Tesfaigzi Y (2007) Identification of a novel Bcl-2 promoter region that counteracts in a p53-dependent manner the inhibitory P2 region. Gene 404:110-116.
Kim SJ, Nian C, Widenmaier S, McIntoch CH (2008) Glucose-dependent insulinotropic polypeptide-mediated up-regulation of beta-cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMPresponsive CREB coactivator 2. Mol Cell Biol 28:1644- 1656.
Haddad JJ (2004) On the antioxidant mechanisms of Bcl- 2: a retrospective of NF-kB signalling and oxidative stress. Biochem Biophys Res Comm 322: 355-363.
López-Araiza H, Ventura JL, López-Diazguerrero NE, González-Marquez H, Gutiérrez-Ruíz MC, Zentella DA, and Königsberg FM (2006) Organ- and Tissue-specific Alterations in the Anti-apoptotic Protein Bcl-2 in CD1 Female Mice of Different Ages. Biogerontology 7:63- 67.
Königsberg M, López-Díazguerrero NE, Aguilar MC, Ventura JL, Gutierrez-Ruiz, MC, Zentella A (2004). Senescent phenotype achieved in vitro is indistinguishable, with the exception of Bcl-2 content, from that attained during the in vivo aging process. Cell Biol Intern 28:641-651.
Pérez-Galán P, Roué G, López-Guerra M, Nguyen M, Villamor N, Montserrat E, Shore GC, Campo E, Colomer D (2008) Bcl-2 phosphorylation modulates sensitivity to the BH3 mimetic GX15-070 (Obatoclax) and reduces its synergistic interaction with bortezomib in chronic lymphocytic leukemia cells. Leukemia. Jul 3. [Epub ahead of print]
Edlich F, Weiwad M, Erdmann F, Fanghänel J, Jarkzowski F, Rahfeld JU, Fischer G (2005) Bcl-2 regulator FKBP38 is activated by Ca2+ /calmodulin EMBO J 24:2688-2699.
Edlich F, Maestre-Martínez M, Jarkzowski F, Weiwad M, Moutty MC, Malesevic M, Jahreis G, Fischer G, Lücke C (2007) A novel calmodulin/ Ca2+ target recognition activates the Bcl-2 regulator FKBP38 J Biol Chem 282: 36496-36504.
Hinds MG, Lackmann M, Skea GL, Harrison PJ,Huang DCS, Day CL (2003) The structure of Bcl-w reveals a role for the C-terminal residues in modulating biological activity. EMBO J 22:1497-1507.