2010, Number 4
<< Back Next >>
Rev Educ Bioquimica 2010; 29 (4)
Importancia de la grasa para la supervivencia en el ayuno, vista a través de una enzimopatía
Mendoza MA
Language: Spanish
References: 21
Page: 111-119
PDF size: 336.56 Kb.
ABSTRACT
Both starvation and metabolic stress activate fatty acid oxidation in order to support
energetically the organism, yielding important amount of ketone bodies in normal
subjects. In patients with medium-chain acyl-CoA dehydrogenase deficiency, the
fatty acid oxidation can not be completed and both acetyl CoA and ketone bodies
are not produced. In addition, metabolites which can not suffer further oxidation
are accumulated and are responsible for hepatic damage associated with no transformation
of ammonia into urea. Patients on starvation or metabolic stress develop
hypoketogenic hypoglycemia with severe neurological compromise. Neurological
alterations are due to both hypoglycemia itself, which occurs as a consequence of
excessive utilization of glucose because of the unavailability of fat-derived energy,
and hyperammonemia due to hepatic damage.
REFERENCES
Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA, Kimmel AR, Londos C (2003) Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J. Cell Biol. 161: 1093-1103.
Brasaemle DL, Subramanian V, Garcia A, Marcienkiewicz A, Rothenberg A (2009) Perilipin A and the control of triacylglycerol metabolism. Mol Cell Biochem 326: 15-21.
Haunerland NH, Spener F (2004) Fatty acidbinding proteins —insights from genetic manipulations. Prog Lipid Res 43: 328-349.
Harris RA (2002) Carbohydrate metabolism: major metabolic pathways and their control. En: Textbook of Biochemistry with clinical correlations. Wiley-Liss USA p. 600.
Owen OE (2005) Ketone bodies as a fuel for the brain during starvation. Biochem Mol Biol Educat 33: 246-251.
Stryer, L. (1995) Biochemistry. Freeman and Co. USA, p 519.
Voet D, Voet J, Pratt CW. (2007) Fundamentos de Bioquímica. La vida a nivel molecular Ed. Panamericana, Argentina 2007, p 779, 649.
Matsubara Y, Kraus JP, Yang-Feng TL, Francke U, Rosenberg LE, Tanaka K (1986). Molecular cloning of cDNAs encoding rat and human medium-chain acyl CoA dehydrogenase and assignment of the gene to human chromosome 1. Proc Natl Acad Sci USA 83: 6543-6547.
Naito E, Ozasa H, Ikeda Y, Tanaka K (1989). Molecular cloning and nucleotide sequence of complementary DNAs encoding human short-chain acyl-coenzyme A dehydrogenase and the study of the molecular basis of short-chain acyl-coenzyme A dehydrogenase deficiency. J Clin Invest 83: 1605-1613.
Indo Y, Yang-Feng T, Glassberg R, Tanaka K (1991) Molecular cloning and nucleotide sequence of cDNAs encoding human longchain acyl CoA dehydrogenase and assignment of the location of its gene (ACADL) to chromosome 2. Genomics 11: 609-620.
Roe CR, Coates PM (1995) Mitochondrial fatty acid oxidation disorders. En: The Metabolic and Molecular Bases of Inherited Disease. Editores: Scriver CR, Beaudet AL, Sly WS, Valle D. McGraw-Hill, pp1501-1533.
Nelson DL, Cox MM (2000) Lehninger Principles of Biochemistry. Worth Publishers 3rd ed. New York, N. Y. USA, p 618, 614-615.
Roth KS (2007) Medium-chain acyl-CoA dehydrogenase deficiency. Emedicine.medscape. com.
Real LM, Gayoso AJ, Olivera M, Caruz A, Delgado AL, Jiménez LM, Ruíz A, Gayoso F (2003) Diagnóstico del déficit de Acil CoA deshidrogenasa de cadena media mediante la reacción en cadena por la polimerasa en tiempo real. Química Clínica 22: 9-12.
Vaz FM, Wanders RJA (2002) Carnitine biosynthesis in mammals. Biochem J 361: 417-429.
Rivlin RS (2007) Riboflavin (vitamin B2). En: Handbook of Vitamins. Editores: Zempleni J, Rucker RB, McCormick DB, Suttie JW. CRC Press USA, pp 233-251.
García-Cuartero R, Lage-Alfranca Y, Centeno- Jiménez M, González-Losada T, González- Vergaz A, Ugarte L (2006) Defectos de la betaoxidación: un diagnóstico olvidado (Carta al editor). An Pediatr (Barc) 64: 179-180.
Vela-Amieva M, Belmont-Martínez L, Fernández- Lainez C, Ramírez-Frías C, Ibarra- González I (2009) Frecuencia de enfermedades metabólicas congénitas susceptibles de ser identificadas por el tamiz neonatal. Acta Pediatr Mex 30: 156-162.
Maier EM, Liebl B, Roschinger W, Nennstiel- Ratzel U, Fingerhut R, Olgemoller B, Busch U, Krone N, vKries R, Roscher AA (2005) Population spectrum of ACADM genotypes correlated to biochemical phenotypes in newborn screening for medium-chain acyl CoA. Hum Mutat 25: 443-452.
Seddon HR, Green A, Gray RGF, Leonard JV, Pollitt RJ (1995) Regional variations in medium-chain acyl CoA dehydrogenase deficiency. Lancet 345: 135-136.
Ziadeh R, Hoffman EP, Finegold DN, Hoop RC, Brackett JC, Strauss AW, Naylor EW (1995) Medium chain acyl CoA dehydrogenase deficiency in Pennsylvania: neonatal screening shows high incidence and unexpected mutation frequencies. Pediatr Res 37: 675-678.