2010, Number 2
<< Back Next >>
Rev Educ Bioquimica 2010; 29 (2)
Citocromo P450 biomarcador de exposición terapeúticotoxicológico-carcinogénico
Coutiño REMR, Purata A, Hernández CP
Language: Spanish
References: 34
Page: 39-52
PDF size: 354.74 Kb.
ABSTRACT
Living organisms during evolution, have developed a number of mechanisms to contend
against foreign chemical compounds of lipophilic or apolar nature. That enters to
the body known as xenobiotics. Among them is the metabolizing system cytochrome
P450 (CYP450), which is the responsible to convert such compounds into more polar
molecules in order to be removed by body fluids including urine. CYP450 is primarily
responsible for the oxidative metabolism of xenobiotics, comprises a large family of
hemoproteins present in many species of which have been already identified more
than 2000 isoforms. All CYP450 were named following a common criterion, based
on the similarity in their sequence to deoxy ribonucleic acid (DNA).
The oxidations catalyzed by CYP450 are NADPH and O
2-dependent reactions of
monooxigenation, a mechanism used by organisms to metabolize of endogenous
steroid molecules, but its importance lies in accelerating the removal of large number
of drugs and toxic compounds, however, they are also responsible of the activation
of toxins and / or precarcinogens and possibly, of the inmune response, too.
Thus, the study of CYP450 family polymorphism can be a very useful marker not
only in therapeutics, but in cytotoxic and carcinogenic studies, in relation to exposure
of compounds that we consider harmful to humans, such as pesticides, additives,
drugs, among others.
REFERENCES
Hong JP, GF, Gelboi HV, Yang CS. (1987) The induction of specific form of cytochrome P450 by fasting. Biochem Biophys Res Commun 142:1077-1083.
Huerta-Bustamante PA, Henríquez Huerta PA, Castillo Peñaloza RL, Carrasco Loza RA, Orellana M, Rodrigo Salinas MA (2003) Estudio comparativo del consumo crónico de vino tinto sobre la expresión y la actividad del citocromo P450 en el hígado y riñón de rata. Med UNAB 6:4-9.
Guengerich FP (1989) Characterization of human microsomal cytochrome P-450 enzymes. Annu Rev Pharmacol Toxicol 29:241- 264.
Guengerich FP (1994) Catalytic selectivity of human cytochrome P450 enzymes: relevance to drug metabolism and toxicity. Toxicol Lett 70:133-138.
Galli E, Feijoo L (2002) Citocromo P450 y su importancia clínica Revista de Neuro- Psiquiatría, 65:187-202.
Autrup H, Daneshvar B, Dragsted LO, Gamborg M, Hansen M, Loft S, Okkels H, Nielsen F, Nielsen PS, Raffn E, Wallin H, Ehlert Knudsen L (1999) Biomarkers for exposure to ambient air pollution--comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress. Environ Health Perspect 107:233-238.
Morales-Olivas FJ (2005) Interacciones farmacológicas de los fármacos antihipertensivos. Med Clin Esp 124:782-789.
Donato-Martin T (2005) ¿Que es el citocromo y como funciona? http://www.uv.es/jcastell/ citocromo_P450.pdf.
Orella M, Guajardo V (2004) Actividad del citocromo P450 y su alteración en diversas patologías. Revista Médica de Chile 132:85-94.
Elizondo-Azuela G (2004) Use of gene knockout and transgenic mouse models to understanding cyp450 regulation and function applications on pharmacology and toxicology. http://74.125.155.132/scholar?q =cache:OU1cW71vbX0J:scholar.google. com/&hl=es&as_sdt=2000.
Zand R, Nelson SD, Slattery JT, Thummel KE, Kalhorn TF, Adams SP, Wright JM (1993) Inhibition and induction of cytochrome P4502E1- catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther 54:142-149.
Pankow D, Schror K (1994) Acetylsalysylic acid inducer of cytochrome P450 2E1. Arch Toxicol 68:261-265.
Ekstrom G, Ingelman-Sudberg M (1989) Rat liver microsomal NADH-supported oxidase activity and lipid peroxidation dependet on ethanol-inducible cytochrome P450. Biochem Pharmacol 38:1313-1319.
Maya J (1995) Citocrome P450 2E1 y diabetis. Colombia Medical 26:26-29.
Santiago C, Bandres F, Gómez-Gallego F. (2002) Polimorfismo del citocromo P450: Papel como marcador biológico. Medicina del Trabajo 11:130-140.
Koop R (2005) Combinatorial biomarkers: from early toxicology assays to patient population profiling. Reviews DDT 10: 781-788.
Garcia E (2005) Presencia de citocromo P450 en las especies de coral Siderastrea siderae y Montastraea faveolata del Caribe Ciencias Marinas, 41 1ª. http://redalyc.uaemex.mx/ pdf/480/48031103.pdf.
Gutierrez R (2004) Farmacogenética personalizada. Revista Cubana de Farmacia 38(3):1-5.
Omura T, Sato R (1964) The carbon monooxide- binding pigment of liver microsomes. I evidence for its hemoprotein nature. J Biol Chem 239(7):2370-2378.
Chilo NH (1999) El citocromo P450 y su rol en la hepatoxicidad inducida por drogas. Enfermedades del Aparato digestivo 2:34-37.
Wrigton SA. Steves JC (1992) The human hepatic cytochromes P450 involved in drug metabolism . Crit Rev Toxicol 20(1):1-21.
Fernández-Salguero P, Hoffman SM, Cholerton S, Mohrenweiser H, Raunio H, Rautio A, Pelkonen O, Haung JD, Evans WE, Idle JR Gonzalez FJ (1995) A genetic polimorphism in coumarin 7 hidroxilation: sequence of the human CYP 2A genes and identification of variant CYP2A6 alleles. Am J Humnan Genet 57(3):651-660.
Raunio H, Rautio A, Gullsten H, Pelkonen O (2001) Polymorphisms of CYP2A6 and its practical consequences. Br J Clin Pharmacol 52(4):357-363.
Tanaka Y, Sasaki M, Shiina H, Tokizane T, Deguchi M, Hirata H, Hinoda Y, Okayama N, Suehiro Y, Urakami S, Kawakami T, Kaneuchi M, Pookot D, Igawa M, Okuyama A, Ishii N, Dahiya R (2006) Catechol- O- Methyltransferase gene polymorphims in bening prostatic hyplasia and sporadic prostate cancer Cancer Epidemiol Biomarkers Prev, 15(2):238-244.
González FJ, Jaiswal AK, Nebert DW (ed.) (1986) Genes: Evolution, Regulation and Relationship to human Cancer and Pharmacogenetics. Cold Spring Harbor Laboratory, New York.
Autrup JL, Thomassen LH, Olsen JH, Wolf H, Autrup H (1999) Glutathione S-transferases as risk factors in prostate cancer. Eur J Cancer Prev 8:525-532.
Kuen Lee, Cáceres D, Nelson V, Csendes A, Rios H, Quiñonez L (2006) Variantes alélicas de CYP1A1 y GSTM1 como biomarcadores de suceptibilidad a cáncer gástrico: Influencia de los hábitos tabáquico y alcohólico. Revista Médica de Chile 134:1107-1115.
Acevedo C, Opazo JL, Huidobro C, Cabezas J, Iturrieta J, Quinones Sepúlveda L (2003) Positive correlation between single or combined genotypes of CYP1A1 and GSTM1 in relation to prostate cancer in Chilean people. Prostate 57:111-117.
Quinones L, Lucas D, Godoy J, Cacéres D, Berthou F, Varela N, Lee K, Acevedo C, Martinez L, Aguilera AM, Gil L (2001) CYP1A1, CYP2E1 and GSTM1 genetic polymorphisms. The effect of single and combined genotypes on lung cancer susceptibility in Chilean people. Cancer Lett, 174(1):35-44.
Quinones L, Lee K, Varela FN, Escala M, Garcia K, Godoy L, Castro A, Soto J, Saavedra I, Caceres D (2006) Cancer pharmacogenetics: study of genetically determined variations on cancer susceptibility due to xenobiotic exposure. Rev Med Chile 134(4): 499-515.
Guengerich FP, Kim DH, Iwasaki M (1991) Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 4:168-179.
Rebbeck T, Walker AH, Jaffe JM, White Dl, Wein AJ, Malkowicz SB (1999) Glutathion S transferase-mu(GSTmu and theta (GSTT1) genotypes in the etiology of prostata cancer. Cancer Epidemiol Biomarkers Prev 8:283- 287.
Coutino RR (1979) Analysis of anaphase in cell culture: an adequate test system for the distinction between compounds which selectively alter the chromosome structure or the mitotic apparatus. Environ Health Perspect 31:131-136.
Coutiño Rodríguez EMdR (1979) Análisis de anafases en células en cultivo: Un sistema adecuado para la distinción de compuestos que alteran selectivamente la estructura cromosómica o el aparato mitótico, tesis de maestría de la Facultad de Ciencias Químicas de la UNAM, México D.F p65.