2010, Número 2
<< Anterior Siguiente >>
Rev Educ Bioquimica 2010; 29 (2)
El marcapaso del corazón puede ser modulado por la acetilcolina mediante una vía delimitada a la membrana
Farías JM, Mascher D, Paredes-Carbajal MC, Torres-Durán PV, Juárez-Oropeza MA
Idioma: Español
Referencias bibliográficas: 29
Paginas: 29-38
Archivo PDF: 306.55 Kb.
RESUMEN
La acetilcolina es un neurotransmisor liberado por el nervio vago que se une al
receptor muscarínico M
2 en las células marcapaso del corazón. Esta unión ligandoreceptor
activa una proteína G de la cual sale el dímero beta-gamma. Este dímero
se mantiene anclado a la cara interna de la membrana plasmática, ejerciendo una
acción rápida, directa, delimitada a la membrana y que no requiere fosforilación sobre
los canales de K+. Estos canales, inicialmente llamados K(Ach), hacen que sea más
lenta la despolarización de la célula marcapaso y disminuya la frecuencia cardiaca.
Además, la acetilcolina puede iniciar y mantener mecanismos de modulación lentos,
con mensajeros intracelulares solubles, activación de cinasas y fosforilación. Se revisó
también la acción adrenérgica complementaria y antagónica a la respuesta colinérgica.
REFERENCIAS (EN ESTE ARTÍCULO)
Xiao X, Wang P, Chou KC (2009) GPCR-CA: A Cellular Automaton Image Approach for Predicting G-Protein-Coupled Receptor Functional Classes. J Comput Chem 30:1414- 1423.
Wess J, Han SJ, Kim SK, Jacobson KA, Li JH (2008) Conformational changes involved in G-protein-coupled-receptor activation. Trends Pharmacol Sci 29:616-625.
Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639-650.
Strader CD, Fong TM, Graziano MP, Tota MR (1995) The family of G-protein-coupled receptors. FASEB J 9:745-754.
Ulloa-Aguirre A, Stanislaus D, Janovick JA, Conn PM (1999) Structure-activity relationships of G protein-coupled receptors. Arch Med Res 30:420-435.
Eglen RM, Bosse R, ReisineT (2007) Emerging Concepts of Guanine Nucleotide-Binding Protein-Coupled Receptor (GPCR) Function and Implications for High Throughput Screening. Assay Drug Dev Technol 5:425-451.
Rangel-Serrano A (1999) Función y propiedades bioquímicas de las proteínas G. BEB 18:53-59.
Suzuki N, Hajicek N, Kozasa T (2009) Regulation and Physiological Functions of G12/13- Mediated Signaling Pathways. Neurosignals 17: 55-70.
Herroeder S, Reichardt P, Sassmann A, Zimmermann B Jaeneke D, Hoecknerr J, Hollmann MW, Fischer KD, Vogt S, Grosse R, Hogg N, Gunzer M, Offermanns S, Wettschureck N. (2009) Guanine nucleotide-binding proteins of the G12 family shape immune functions by controlling CD4+ T cell adhesiveness and motility. Immunity 30:708-20.
Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423-450.
Simonds WF, Butrynski JE, Gautam N, Unson CG, Spiegel AM (1991) G-protein beta gamma dimers. Membrane targeting requires subunit coexpression and intact gamma C-AA- X domain. J Biol Chem 266:5363-5366.
Hille B (2001) Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA, USA.
Díaz-Cardenas AF, Arenas I, García DE (2008) PMA counteracts G protein actions on Ca(V)2.2 channels in rat sympathetic neurons. Arch Biochem Biophys 473:1-7.
Giles W, Noble SJ (1976) Changes in membrane currents in bullfrog atrium produced by acetylcholine. J Physiol 261:103-123.
Hescheler J, Kameyama M, Trautwein W (1986) On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflügers Arch 407:182-189.
Siegel GJ, Albers RW, Brady S, Price DL (2006) Basic Neurochemistry. Molecular, Cellular, and Medical Aspects. Elsevier, 7a. Edition, Philadelphia EUA.
Hartzell HC (1988) Regulation of cardiac ion channels by catecholamines, acetylcholine, and second Messenger systems. Prog Biophys Molec Biol 52:165-247.
Yatani A, Brown AM (1989) Rapid beta-Adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science 245:71-74.
Trautwein W, Dudel J (1958) Zum Mechanismus der Membranwirkung des Acetylcholin an der Herzmuskelfaser. Pflügers Arch 266:324-334.
Sakmann B, Noma A, Trautwein W (1983) Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature 303:250-253.
Zhou XB, Lutz S, Utku E, Sausbier U, Ruth P, Wieland T, Korth M (2008) M2 muscarinic receptors induce airway smooth muscle activation via a dual Gbg-mediated inhibition of large conductance Ca2+-activated K+ channel activity. J Biol Chem 238:21036-21044.
Breitwieser GE, Szabo G (1985) Uncoupling of cardiac muscarinic and beta-adrenergic receptors from ion channels by guanine nucleotide analogue. Nature 317:538-540.
Breitwieser GE, Szabo G (1988) Mechanism of muscarinic receptor-induced K+ channel activation as revealed by hydrolysis-resistant GTP analogues. J Gen Physiol 91:469-493.
Soejima M, Noma A (1984) Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflügers Arch 400:424-431.
Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321- 326.
Reuveny E, Slesinger PA, Inglese J, Morales JM, Iniguez-Lluhi JA, Lefkowitz RJ, Bourne HR, Jan YN, Jan LY (1994) Activation of the cloned muscarinic potassium channel by G protein beta gamma subunits. Nature 370:143-146.
Morrey C, Estephan R, Abbott GW, Levi R (2008) Cardioprotective Effect of Histamine H3-Receptor Activation: Pivotal Role of GDependent Inhibition of Voltage-Operated Ca2+ Channels. JPET 326:871-878.
Hu C, Depuy SD, Yao J, McIntire WE, Barrett PQ (2009) Protein kinase A activity controls the regulation of T-type CaV3.2 channels by Gbetagamma dimmers. J Biol Chem 284:7465-7473.
Tedford HW, Zamponi GW (2006) Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev 58:837-862.