2011, Number 2
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2011; 14 (2)
La expresión alotópica: ¿tarea imposible o estrategia factible para el tratamiento de enfermedades mitocondriales?
Figueroa-Martínez FJ, González-Halphen D
Language: Spanish
References: 68
Page: 106-119
PDF size: 259.96 Kb.
ABSTRACT
Allotopic expression refers to the functional relocation of genes from one cellular compartment to another. Here, it refers to the expression of mitochondrial genes either from the nucleus or from a cytosolic vector. It is considered a promising strategy to develop gene therapies against diseases caused by mutations in the mitochondrial genome. Nowadays, it is possible to introduce genetic material into the nuclear chromosomes and there is a good knowledge about the mechanisms of protein import into mitochondria so in principle, a single gene copy per cell would be sufficient to synthesize the necessary proteins and deliver them to all affected mitochondria. In the last 20 years allotopic expression has been tried in yeasts, plants, mammal cells and animals carrying mitochondrial diseases. Many studies published in the last 10 years suggest that allotopic expression is a successful strategy and some clinical trials using this approach are currently being carried out. Nevertheless, there is also a large number of evidence that questions the viability of allotopic expression and that proposes more stringent criteria to make sure that the allotopically-expressed proteins are actually assembled into their corresponding mitochondrial complex. In this work, we first introduce the concept of allotopic expression, then we review the most relevant data in the field and, finally, we discuss the difficulties that must be overcome before attempting gene therapies in patients with mitochondrial diseases.
REFERENCES
McBride, H.M., Neuspiel, M. & Wasiak, S. Mitochondria: more than just a powerhouse. Curr Biol 16(14), R551-560 (2006).
Margulis, L. Origin of eukaryotic cell (Yale University Press, New Heaven, Ct, 1970). 371 págs.
Gray, M.W., Burger, G. & Lang, B.F. Mitochondrial evolution. Science 283(5407), 1476-1481 (1999).
Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290(5806), 457-465 (1981).
Andrews, R.M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23(2), 147 (1999).
Calvo, S. et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet 38(5), 576-582 (2006).
Wallace, D.C., Fan, W. & Procaccio, V. Mitochondrial energetics and therapeutics. Annu Rev Pathol 5, 297-348 (2010).
DiMauro, S., Hirano, M., & Schon, E.A. Approaches to the treatment of mitochondrial diseases. Muscle Nerve 34(3), 265-283 (2006).
Schaefer, A.M. et al. Prevalence of mitochondrial DNA disease in adults. Ann Neurol 63(1), 35-39 (2008).
Elliott, H.R., Samuels, D.C., Eden, J.A., Relton, C.L. & Chinnery, P.F. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83(2), 254-260 (2008).
Remacle, C., Cardol, P., Coosemans, N., Gaisne, M. & Bonnefoy, N. High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci U S A 103(12), 4771-4776 (2006).
King, M.P. & Attardi, G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246(4929), 500-503 (1989).
Manfredi, G. et al. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet 30(4), 394-399 (2002).
Ojaimi, J., Pan, J., Santra, S., Snell, W.J. & Schon, E.A. An algal nucleus-encoded subunit of mitochondrial ATP synthase rescues a defect in the analogous human mitochondrial-encoded subunit. Mol Biol Cell 13(11), 3836-3844 (2002).
Zullo, S.J. et al. Stable transformation of CHO Cells and human NARP cybrids confers oligomycin resistance (oli(r)) following transfer of a mitochondrial DNA-encoded oli(r) ATPase6 gene to the nuclear genome: a model system for mtDNA gene therapy. Rejuvenation Res 8(1), 18-28 (2005).
Bonnet, C. et al. Allotopic mRNA localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting complex I or v subunits. Rejuvenation Res 10(2), 127-144 (2007).
Bokori-Brown, M. & Holt, I.J. Expression of algal nuclear ATP synthase subunit 6 in human cells results in protein targeting to mitochondria but no assembly into ATP synthase. Rejuvenation Res 9(4), 455-469 (2006).
Figueroa-Martínez, F. et al. What limits the allotopic expression of nucleus-encoded mitochondrial genes? The case of the chimeric Cox3 and Atp6 genes. Mitochondrion 11(1), 147-154 (2011).
Holt, I.J., Harding, A.E., Petty, R.K. & Morgan-Hughes, J.A. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 46(3), 428-433 (1990).
Tatuch, Y. et al. Heteroplasmic mtDNA mutation (T——G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet 50(4), 852-858 (1992).
Guy, J. et al. Rescue of a mitochondrial deficiency causing Leber Hereditary Optic Neuropathy. Ann Neurol 52(5), 534-542 (2002).
Wallace, D.C. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242(4884), 1427-1430 (1988).
Hoffbuhr, K.C. et al. A pathogenic 15-base pair deletion in mitochondrial DNA-encoded cytochrome c oxidase subunit III results in the absence of functional cytochrome c oxidase. J Biol Chem 275(18), 13994-14003 (2000).
Keightley, J.A. et al. A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat Genet 12(4), 410-416 (1996).
Inoue, K. et al. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26(2), 176-181 (2000).
Kasahara, A. et al. Generation of trans-mitochondrial mice carrying homoplasmic mtDNAs with a missense mutation in a structural gene using ES cells. Hum Mol Genet 15(6), 871-881 (2006).
Fan, W. et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319(5865), 958-962 (2008).
Zhang, X., Jones, D. & González-Lima, F. Mouse model of optic neuropathy caused by mitochondrial complex I dysfunction. Neurosci Lett 326(2), 97-100 (2002).
Qi, X., Lewin, A.S., Hauswirth, W.W. & Guy, J. Suppression of complex I gene expression induces optic neuropathy. Ann Neurol 53(2), 198-205 (2003).
DiMauro, S. & Mancuso, M. Mitochondrial diseases: therapeutic approaches. Biosci Rep 27(1-3), 125-137 (2007).
Tuppen, H.A., Blakely, E.L., Turnbull, D.M. & Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797(2), 113-128 (2010).
Doyle, S.R. & Chan, C.K. Mitochondrial gene therapy: an evaluation of strategies for the treatment of mitochondrial DNA disorders. Hum Gene Ther 19(12), 1335-1348 (2008).
Bacman, S.R., Williams, S.L., Hernández, D. & Moraes, C.T. Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a 'differential multiple cleavagesite' model. Gene Ther 14(18), 1309-1318 (2007).
Taylor, R.W., Chinnery, P.F., Turnbull, D.M. & Lightowlers, R.N. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet 15(2), 212-215 (1997).
Yoon, Y.G. & Koob, M.D. Efficient cloning and engineering of entire mitochondrial genomes in Escherichia coli and transfer into transcriptionally active mitochondria. Nucleic Acids Res 31(5), 1407-1415 (2003).
Nagley, P. & Devenish, R.J. Leading organellar proteins along new pathways: the relocation of mitochondrial and chloroplast genes to the nucleus. Trends Biochem Sci 14(1), 31-35 (1989).
Banroques, J., Delahodde, A. & Jacq, C. A mitochondrial RNA maturase gene transferred to the yeast nucleus can control mitochondrial mRNA splicing. Cell 46(6), 837-844 (1986).
Gearing, D.P. & Nagley, P. Yeast mitochondrial ATPase subunit 8, normally a mitochondrial gene product, expressed in vitro and imported back into the organelle. EMBO J 5(13), 3651-3655 (1986).
Nagley, P. et al. Assembly of functional proton-translocating ATPase complex in yeast mitochondria with cytoplasmically synthesized subunit 8, a polypeptide normally encoded within the organelle. Proc Natl Acad Sci U S A 85(7), 2091-2095 (1988).
Law, R.H., Devenish, R.J. & Nagley, P. Assembly of imported subunit 8 into the ATP synthase complex of isolated yeast mitochondria. Eur J Biochem 188(2), 421-429 (1990).
Nero, D., Ekkel, S.M., Wang, L.F., Grasso, D.G. & Nagley, P. Site directed mutagenesis of subunit 8 of yeast mitochondrial ATP synthase. Functional and import properties of a series of C-terminally truncated forms. FEBS Lett 270(1-2), 62-66 (1990).
Roucou, X., Artika, I.M., Devenish, R.J. & Nagley, P. Bioenergetic and structural consequences of allotopic expression of subunit 8 of yeast mitochondrial ATP synthase. The hydrophobic character of residues 23 and 24 is essential for maximal activity and structural stability of the enzyme complex. Eur J Biochem 261(2), 444-451 (1999).
Popot, J.L. & de Vitry, C. On the microassembly of integral membrane proteins. Annu Rev Biophys Biophys Chem 19, 369-403 (1990).
Farrell, L.B., Gearing, D.P. & Nagley, P. Reprogrammed expression of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Expression in vitro from a chemically synthesized gene and import into isolated mitochondria. Eur J Biochem 173(1), 131-137 (1988).
Galanis, M., Devenish, R.J. & Nagley, P. Duplication of leader sequence for protein targeting to mitochondria leads to increased import efficiency. FEBS Lett 282(2), 425-430 (1991).
Claros, M.G. et al. Limitations to in vivo import of hydrophobic proteins into yeast mitochondria. The case of a cytoplasmically synthesized apocytochrome b. Eur J Biochem 228(3), 762-771 (1995).
Claros, M.G. MitoProt, a Macintosh application for studying mitochondrial proteins. Comput Appl Biosci 11(4), 441-447 (1995).
Supekova, L., Supek, F., Greer, J.E. & Schultz, P.G. A single mutation in the first transmembrane domain of yeast COX2 enables its allotopic expression. Proc Natl Acad Sci U S A 107(11), 5047-5052 (2010).
Daley, D.O. et al. Gene transfer from mitochondrion to nucleus: novel mechanisms for gene activation from Cox2. Plant J 30(1), 11-21 (2002).
Pineau, B., Mathieu, C., Gerard-Hirne, C., De Paepe, R. & Chetrit, P. Targeting the NAD7 subunit to mitochondria restores a functional complex I and a wild type phenotype in the Nicotiana sylvestris CMS II mutant lacking nad7. J Biol Chem 280(28), 25994-26001 (2005).
Daley, D.O., Clifton, R. & Whelan, J. Intracellular gene transfer: reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase. Proc Natl Acad Sci U S A 99(16), 10510-10515 (2002).
Tsukihara, T. et al. The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc Natl Acad Sci U S A 100(26), 15304-15309 (2003).
Funes, S. et al. The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0-ATPase is encoded by a nuclear gene in Chlamydomonas reinhardtii. J Biol Chem 277(8), 6051-6058 (2002).
Newman, N.J. Leber’s hereditary optic neuropathy. New genetic considerations. Arch Neurol 50(5), 540-548 (1993).
Man, P.Y. et al. The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am J Hum Genet 72(2), 333-339 (2003).
Corral-Debrinski, M., Blugeon, C. & Jacq, C. In yeast, the 3' untranslated region or the presequence of ATM1 is required for the exclusive localization of its mRNA to the vicinity of mitochondria. Mol Cell Biol 20(21), 7881-7892 (2000).
Sylvestre, J., Vialette, S., Corral Debrinski, M. & Jacq, C. Long mRNAs coding for yeast mitochondrial proteins of prokaryotic origin preferentially localize to the vicinity of mitochondria. Genome Biol 4(7), R44 (2003).
Kaltimbacher, V. et al. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA12(7), 1408-1417 (2006).
Ellouze, S. et al. Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet 83(3), 373-387 (2008).
Qi, X., Sun, L., Lewin, A.S., Hauswirth, W.W. & Guy, J. The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Invest Ophthalmol Vis Sci 48(1), 1-10 (2007).
Guy, J. et al. Efficiency and safety of AAV-mediated gene delivery of the human ND4 complex I subunit in the mouse visual system. Invest Ophthalmol Vis Sci 50(9), 4205-4214 (2009).
Koilkonda, R.D., Hauswirth, W.W. & Guy, J. Efficient expression of self-complementary AAV in ganglion cells of the ex vivo primate retina. Mol Vis 15, 2796-2802 (2009).
Lam, B.L. et al. Leber hereditary optic neuropathy gene therapy clinical trial recruitment: year 1. Arch Ophthalmol 128(9), 1129-1135 (2010).
Oca-Cossio, J., Kenyon, L., Hao, H. & Moraes, C.T. Limitations of allotopic expression of mitochondrial genes in mammalian cells. Genetics 165(2), 707-720 (2003).
Pérez-Martínez, X. et al. Structure of nuclear-localized cox3 genes in Chlamydomonas reinhardtii and in its colorless close relative Polytomella sp. Curr Genet 40(6), 399-404 (2002).
González-Halphen, D. et al. Genetic correction of mitochondrial diseases: using the natural migration of mitochondrial genes to the nucleus in chlorophyte algae as a model system. Ann N Y Acad Sci 1019, 232-239 (2004).
Carrozzo, R. et al. Maternally-inherited Leigh syndrome-related mutations bolster mitochondrial-mediated apoptosis. J Neurochem 90(2), 490-501 (2004).
Perales-Clemente, E., Fernández-Silva, P., Acín-Pérez, R., Pérez- Martos, A. & Enríquez, J.A. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Res 39(1), 225-234 (2011).