2012, Number 2
<< Back Next >>
Biotecnol Apl 2012; 29 (2)
Study and isolation of aerobic hydrocarbon-degrading bacteria from Cuban shorelines
Barrios-San Martín Y, Acosta S, Sánchez A, Toledo A, González F, García RM
Language: English
References: 54
Page: 80-86
PDF size: 354.67 Kb.
ABSTRACT
The isolation of aerobic marine bacteria able to degrade hydrocarbons represents a promising alternative for the decontamination of oceanic and coastal environments. In the present work, twelve water and sediment samples from the Felton coastline in the Province of Holguín were collected and screened with Bushnell-Haas medium supplemented with light crude oil or with seawater supplemented with yeast extract and crude oil as a carbon source, obtaining twenty seven and six bacterial isolates respectively that were able to grow in these media. The obtained isolates were then subjected to selection in Bushnell-Haas medium supplemented with a heavy crude oil, selecting three strains able to degrade this hydrocarbon mixture within a period of seven days. Pure cultures of these strains were further used in crude oil biodegradability assays. Total petroleum hydrocarbon (TPH) degradation was evaluated through SARA analysis, employing gas chromatography with an FID detector and infrared spectroscopy to analyze the aliphatic and aromatic hydrocarbon fractions, respectively. All three stains removed more than 60% of the TPH and one of them showed the best degradation potential with figures above 65% for the entire hydrocarbon fraction, except resins. Two of the strains were also able to decrease C17:Pr and C18:Ph ratios to less than 50% in comparison to the abiotic control. Two of these strains were phenotypically identified as sp., and the remaining one as sp. The degradation potential exhibited by these new isolates warrants further studies on their possible application to decontaminate coastal environments affected by oil spills.
REFERENCES
Madigan M, Martinko J, Parker J. Brock, biología de los microorganismos. 10 ed. Revised. Madrid: Prentice Hall, Iberia; 2004.
Pollard SJT, Hrudey SE, Fedorak PM. Bioremediation of petroleum-and creosote-contaminated soils: a review of constraints. Waste Manage Res. 1994; 12(2):173-94.
Abalos A, Vinas M, Sabate J, Manresa MA, Solanas AM. Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation. 2004;15(4):249-60.
Nápoles J. Ensayos de tratabilidad en suelos contaminados con petróleo [dissertation]. Santiago de Cuba: Universidad de Oriente; 2005.
Vinas M, Sabate J, Espuny MJ, Solanas AM. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol. 2005;71(11):7008-18.
Swannell RP, Lee K, McDonagh M. Field evaluations of marine oil spill bioremediation. Microbiol Rev. 1996;60(2):342-65.
Fernandez-Alvarez P, Vila J, Garrido-Fernandez JM, Grifoll M, Lema JM. Trials of bioremediation on a beach affected by the heavy oil spill of the Prestige. J Hazard Mater. 2006;137(3):1523-31.
Bushnell LD, Haas HF. The Utilization of Certain Hydrocarbons by Microorganisms. J Bacteriol. 1941;41(5):653-73.
Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol. 1972;110(1):402-29.
Rivera-Cruz MC, Ferrera-Cerrato R, Volke V, Rodríguez R, Fernández L. Adaptación y selección de microorganismos autóctonos en medios de cultivo enriquecidos con petróleo crudo. Terra Latinoam. 2002;20(4):423-34.
Chablé de la Cruz G, García F, Madrigal EO. Evaluación de la respuesta de los microorganismos presentes en un derrame de hidrocarburos [Internet]. 2004 [cited 2009 Oct 29]. Available from http://www.biologia-en-internet.com
Oliver J. Taxonomic scheme for the identification of marine bacteria. Deep-sea Res. 1982;29(6):795-8.
Martínez J, Romay Z, Rojas T, Guerra G. Manual práctico de Microbiología. La Habana: Pueblo y Educación; 1985.
Pellón F, Orozco R, León J. Bacterias marinas con capacidad antimicrobiana aisladas de moluscos bivalvos en cultivos. Rev Per Biol. 2001 [cited 2010 Apr 14];8(2):[about 10 p.]. Available from: http://sisbib.unmsm.edu.pe/BVRevistas/biologia/v08_n2/bacte_marinas.htm
Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey´s Manual of Determinative Bacteriology. 9 ed. Baltimore: Williams & Wilkins; 1994.
Gallardo AA, Risso S, Fajardo MA, Estevao S. Caracterización de polaciones microbianas presentes en la macroalga comestible Monostroma undulatum, Wittrock. Arch Latinoam Nutr. 54(3):337-45.
Leahy JG, Colwell RR. Microbial degradation of hydrocarbons in the environment. Microbiol Rev. 1990;54(3):305-15.
Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, et al. Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol. 2000;66(2):518-23.
Roling WF, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJ, et al. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol. 2002;68(11):5537-48.
Ficker M, Krastel K, Orlicky S, Edwards E. Molecular characterization of a toluene-degrading methanogenic consortium. Appl Environ Microbiol. 1999; 65(12):5576-85.
Dojka MA, Hugenholtz P, Haack SK, Pace NR. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 1998;64(10):3869-77.
Olivera NL, Commendatore MG, Moran AC, Esteves JL. Biosurfactant-enhanced degradation of residual hydrocarbons from slip bilge wastes. J Ind Microbiol Biot. 2000;25(2):70-3.
Núñez R. Obtención, caracterización y aplicación de un bioproducto bacteriano para la biorremediación de derrames de hidrocarburos [dissertation], La Habana: Universidad de La Habana; 2004.
Ara-Rojas SL, Massol-Deyá A. Diversidad bacteriana en un biorreactor de lecho fluidificado durante el tratamiento de agua contaminada con nafta. Rev Argent Microbiol. 2007;39(4):243-51.
Kim JS, Crowley DE. Microbial diversity in natural asphalts of the Rancho La Brea Tar Pits. Appl Environ Microbiol. 2007;73(14):4579-91.
Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T. Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol. 2008;74(3):792-801.
Daane LL, Harjono I, Zylstra GJ, Haggblom MM. Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol. 2001;67(6):2683-91.
Colores GM, Macur RE, Ward DM, Inskeep WP. Molecular analysis of surfactant-driven microbial population shifts in hydrocarbon-contaminated soil. Appl Environ Microbiol. 2000;66(7):2959-64.
Kanaly RA, Bartha R, Watanabe K, Harayama S. Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol. 2000;66(10):4205-11.
Roling WF, Milner MG, Jones DM, Fratepietro F, Swannell RP, Daniel F, et al. Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol. 2004;70(5):2603-13.
Bordenave S, Goni-Urriza MS, Caumette P, Duran R. Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol. 2007;73(19):6089-97.
Miravet ME. Estudio de bacterias heterótrofas en el Golfo de Batabanó [dissertation]. La Habana: Universidad de La Habana; 1996.
Cerniglia CE. Biodegradation of Polycyclic Aromatic Hydrocarbons. Biodegradation. 1992;(2-3):351-68.
Dagher F, Deziel E, Lirette P, Paquette G, Bisaillon JG, Villemur R. Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can J Microbiol. 1997;43(4):368-77.
Whyte LG, Bourbonniere L, Greer CW. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 1997;63(9):3719-23.
Hilyard EJ, Jones-Meehan JM, Spargo BJ, Hill RT. Enrichment, isolation, and phylogenetic identification of polycyclic aromatic hydrocarbon-degrading bacteria from Elizabeth River sediments. Appl Environ Microbiol. 2008;74(4):1176-82.
Mukred AM, Hamid AA, Hamzah A, Wan Yusoff WM. Development of Three Bacteria Consortium for the Bioremediation of Crude Petroleum-oil in Contaminated Water. Online J Biol Sci. 2008; 8(4):73-9.
Stringfellow WT, Aitken MD. Comparative physiology of phenanthrene degradation by two dissimilar pseudomonads isolated from a creosote-contaminated soil. Can J Microbiol. 1994;40(6):432-8.
Noordman W, Bruseau M, Jassen D. Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil. Environ Sci Technol. 1998;32(12):1806-12.
Goodwin KD, Tokarczyk R, Stephens FC, Saltzman ES. Description of toluene inhibition of methyl bromide biodegradation in seawater and isolation of a marine toluene oxidizer that degrades methyl bromide. Appl Environ Microbiol. 2005;71(7):3495-503.
Neumann G, Teras R, Monson L, Kivisaar M, Schauer F, Heipieper HJ. Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: effects of toxicity and adaptation. Appl Environ Microbiol. 2004;70(4):1907-12.
Melcher RJ, Apitz SE, Hemmingsen BB. Impact of irradiation and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies. Appl Environ Microbiol. 2002;68(6):2858-68.
Ramos JL, Duque E, Rodriguez-Herva JJ, Godoy P, Haidour A, Reyes F, et al. Mechanisms for solvent tolerance in bacteria. J Biol Chem. 1997;272(7):3887-90.
Narváez-Florez S, Gómez ML, Martínez MM. Selección de bacterias con capacidad degradadora de hidrocarburos aisladas a partir de sedimentos del Caribe colombiano. Bol Invemar. 2008; 37(1):61-75.
LaGrega MD, Buckingham PL, Evans JC, Environmental Resources Management group. Hazardous waste management. 2nd ed. Boston: McGraw-Hill; 2001. p. 7-23.
Van Hamme JD, Singh A, Ward OP. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev. 2003;67(4):503-49.
Song HG, Wang X, Bartha R. Bioremediation potential of terrestrial fuel spills. Appl Environ Microbiol. 1990;56(3): 652-6.
León N, Infante C, Arias M, Marquez M, Gorrín A. Biodegradability of Venezuela crude oils. SPE International conference on health, safety, and environment in oil and gas exploration and production, 1998 June 7-10, Caracas, Venezuela.
Joseph IN, Capo MC, Bellota M, Ramos Y, Ramos I, Fuentes M. Aislamiento y selección de microorganismos degradadores de hidrocarburos en la plataforma cubana. Ciencias Biológicas. 1994;27:137-48.
Solano-Serena F, Marchal R, Casaregola S, Vasnier C, Lebeault JM, Vandecasteele JP. A Mycobacterium strain with extended capacities for degradation of gasoline hydrocarbons. Appl Environ Microbiol. 2000;66(6):2392-9.
Venosa A, Zhu X. Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci technol Bull. 2003;8:163-78.
Ruberto L, Vñazquez S, y Mac Cormack W. Effectiveness of the natural bacterial flora, bioestimulation and bioaumentation on the bioremediation of a hydrocarbon contaminated Antartic soil. Int Biodeter Biodegr. 2003;52(2):115-25.
Young LY, Cerniglia CE, editors. Microbial Transformation and degradation of toxic organic chemicals. Nueva York: Willy-Liss; 1995.
Araujo I, Gómez A, Barrera M, Angulo N, Morillo G, Cárdenas C, et al. Surfactantes biológicos en la biorremediación de aguas contaminadas con crudo liviano. Interciencia. 2008; 33(4):245-50.