2011, Number 2
<< Back
Rev Med UV 2011; 11 (2)
Defensa química y citocromo P450: Relación con la defensa inmune
Coutiño REMR
Language: Spanish
References: 31
Page: 53-63
PDF size: 328.79 Kb.
ABSTRACT
The main contribution of this paper is to reflect on the importance of the chemical defense mechanism and the involvement of CYP450 multienzyme complex in response to different and strange environmental compounds or xenobiotics (XbS), including drugs, which in a similar way to that of the immune system take part in defending organisms from stressing conditions (physical, chemical and biological pollutants) in order to eliminate them, neutralize them or tolerate them. However, free radicals and reactive oxygen species are produced within both of them, with high affinity for nucleophilic centers such as DNA and proteins. In particular, the affinity for thiol groups (SH) domains of cysteine is emphasized. Through this perspective we analyze how the chemical defense is being involved in the toxicity, mutagenicity, carcinogenicity and immunotoxicity of XbS, in which sex, diet, pathophysiological states, addictions, lifestyle and therapeutic treatments also take part in. in other words genetic (polymorphisms) and non-genetic (environmental) factors contribute to the health of people. However, the most important point is to visualize some association aspects and the relationships with the immune system, from the perspective of its regulation by nuclear receptors, particularly steroid receptors. Finally, while we were looking for finding a relationship between the cytochrome superfamily and the immunoglobulin (IgG), we found out that there is a high degree of homology between the cytochrome superfamily, specially CYP450 2D6, 2D9 and the kappa chain of the IgG, which will allow us to study the evolution, divergence and regulation of these mechanisms. By doing this we will be able to get a better understanding of the immunological dogma between self/non-self. It may not be space-time continuum, as it has been established, because through the chemical defense mechanism we can understand the reason why the self is unknown and the non-self is known.
REFERENCES
Gonzalez, FJ, Jaiswal AK and Nebert, DW (ed.) Genes: Evolution, Regulation and Relationship to human Cancer and Pharmacogenetics. Cold Spring Harb Symp Quant Biol. 1986; 51 Pt 2: 879-90.
Donato-Martin T. ¿Qué es el citocromo y cómo funciona? [Monografía en internet] México: Universidad Veracruzana; 2005 [citado 16 Marzo de 2011]. Disponible en: http://www.uv.es/jcastell/citocromo_P450.pdf
Guengerich, FP. Catalytic selectivity of human cytochrome P450 enzymes: relevance to drug metabolism and toxicity. Toxicol Lett 1994; 70 (2): 133-38.
Ekstrom, G, Ingelman-Sudberg M. Rat liver microsomal NADHsupported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P450. Biochem Pharmacol 1989; 38 (8): 1313-19.
Heras M E, P y ANC. Sorbitran: Flujo de la Información Genética 1 Dogma Central de la Biología Molecular, México: Fac. de Estudios Superiores de Iztacala Fa. de Ciencias, UNAM. 2008; 1-195.
Chilo NH. El citocromo P450 y su rol en la hepatoxicidad inducida por drogas. Enfermedades del Aparato digestivo. 1999; 2: 34-37.
Fernando Jaramillo Juárez, Fco. A posadas del Río, Salvador Acevedo Martínez. Cinética de Xenobióticos en los Mamíferos. En: Jaramillo Juárez F, Rincón Sánchez AR, Rico Martínez Roberto. Contaminación Ambiental en Textos Universitarios 1era Ed. MéxicO: Universidad Autónoma de Aguscalientes/Universidad de Guadalajara; 2008. p.203-222.
Elda Maria del Rocio Coutiño Rodriguez, Antonio Purata y Pedro Hernández Cruz. Citocromo P450 Biomarcador de exposición terapeútico, toxicológico y carcinogénico. Revista de Educación en Bioquímica 2010; 29 (2): 39-52.
Mark W Linder, Russell A Prough, Roland Valdes Jr. Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clinical Chemistry 1997; 43 (2): 254-266.
Santiago C, Bandres F, Gómez-Gallego F. Polimorfismo del citocromo P450: Papel como marcador biológico. Medicina del Trabajo 2002; 11: 130-140.
Galli E. y FL. Citocromo P450 y su importancia clínica. Revista de Neuro Psiquiatría 2002; 65: 187-202.
Michael J Meaney. Epigenétics and the biological definition of gen x enviroments interactions. Chil development 2010; 8 (1): 41-79.
Quinones L, Lee K, Varela FN, Escala M, GarciaK, Godoy L, Castro A, Soto J, Saavedra I,Caceres D. Cancer pharmacogenetics: study of genetically determined variations on cancer susceptibility due to xenobiotic exposure. Rev Med Chil 2006; 134 (4): 499-515.
Guengerich FP., Kim, D.H. and Iwasaki, M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 1991; (4): 168-179.
Kuen Lee D., C; Nelson V, Csendes A, Rios H, Quiñonez L. Variantes alélicas de CYP1A1 y GSTM1 como biomarcadores de suceptibilidad a cáncer gástrico: Influencia de los hábitos tabáquico y alcohólico. Revista Médica de Chile 2006; 134: 1107-115.
Yukiro Takanata. Catecol O metyltransferasa gene polimorphisms in benign prostatic hyperplasis and sporadic prostate cancer. Cancer Epidemiology Biomarkers Prev 2006; 15 (2): 238-44.
Amanda B Spurdle, et all Polymorphism at the glutathione S-transferase GSTM1,GSTT1 and GSTP1 loci: risk of ovarian cancer for histological subtype, Carcinogenesis 2001; 22 (1): 67-72.
Zand R, Nelson SD, Slattery JT, Thummel KE,Kalhorn TF, Adams SP, Wright JM Inhibition and induction of cytochrome P4502E1-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther 1993; 54: 142-49.
Pankow DD, B, Schror K l. Acetylsalysylic acid inducer of cytochrome P450 2E1. Arch Toxicol 1994; 68: 261-65.
Maya J. Citocrome P450 2E1 y diabetis. Colombia Medical 1995; 26: 26-8.
Hong JP, GF., Gelboi HV, Yang CS. The induction of specific form of cytochrome P450 by fasting. Biochem Biophys Res Commun 1987; 142: 1077-83.
Olavi Pelkonen et al. Inhibition and induction of human cytochrome P450 enzymes: current status Arch Toxicol 2008; 82: 667–715 23. Peter Nussbaumer. and Andreas Billichi. Steroid sulfatase inhibitors. Medical Research 2004; 24(4): 429-576.
Rioja Zuazu J., Bandrés Elizalde E., Rosell Costa D., Rincón Mayans A., Zudaire Bergera J., Gil Sanz MªJ., Rioja Sanz LA., García Foncillas J., Berián Polo JMª Rioja Expresión del receptor de esteroides y xenobiotic (SXR) y del gene de multiresistencia a drogas (MDR1) y de los polimorfismos de las enzimas GSts, SULTs, y CYP en tumores vesicales profundos, análisis de su expresión y correlación con otros pronos. Actas Urol 2007; 31 (19): 1107-1116.
Fernando Jaramillo Juárez, Fco A posadas del Río, Genaro Gabriel Ortìz. Aspectos básicos de la toxicidad los de Xenobióticos. En: Jaramillo Juárez F, Rincón Sánchez AR, Rico Martínez Roberto. Contaminación Ambiental en Textos Universitarios. 1era Ed. México: Universidad Autónoma de Aguascalientes/Universidad de Guadalajara; 2008. p.235-247.
Shanle K Erin, Wei Xu. Endrocrine disrupting chemicals targeting estrogen receptor signaling: Identification and mechanism of action. Chem Res Toxicol 2011; 24 (1): 6-19.
Bouman A, Heineman MJ, Faas MM Sex hormons and immune response in humans. Hum Reprd Update 2005; 1 (4): 411-23.
Sansar Ahned, WJ, Penhale, Norman Talal. Sex hormones immune response and autoimmune disease. Am J Pathol 1985; 121 (3): 531-51.
Verttheyi D. Sex hormones as inmunomodulators in health and disease. Inmunopharmacol 2001; 1 (6): 983-93.
Sánchez-Rodríguez MA, Mendoza-Núñez VM. Envejecimiento, enfermedades crónicas y antioxidantes. México: Facultad de Estudios Superiores Zaragoza, UNAM; 2003. p. 1-131.
Cristiane Dosne Pasqualini. Tambalea el dogma Propio/No propio de la inmunología.. Buenos Aires: Medicina ed; 2005: 65(4): 366-368
PubMed. Bethesda: National Library of Medicine. [serial on line] 1966 [citado 6-9 enero de 2012]; Disponible en: http://www.ncbi,.nlm.nih.gov/Structure/cdd/wrpsb.cgi?SEQUENCE-45239467&FULL