2001, Number 3
<< Back Next >>
Microbiología 2001; 43 (3)
Immunological factors governing resistance and susceptibility of mice to Leishmania major infection
Aguilar-Torrentera F, Carlier Y
Language: English
References: 133
Page: 135-142
PDF size: 89.56 Kb.
ABSTRACT
Infection with
Leishmania sp. is particularly suitable for the study of immunoregulatory mechanisms associated with host susceptibility or resistance. The clinical spectrum of this infection results from parasite virulence factors and host immune responses, some of which acting in a host protective manner while others exacerbate the disease. In the mouse model, factors governing resistance to
Leishmania major infection mainly depends on the IFN-γ activation of the leishmanicidal function of macrophages, and the Fas/FasL-dependent T-cell cytotoxicity against infected macrophages. On the other hand, the immunological factors of susceptibility involve: I) the early upregulation of IL-4 production induced by the LACK antigen, II) the upregulation of IL-2 production, III) the high production of TGF-Β as macrophage deactivating factor, and IV) the production of IL-10 by the
L. major infected macrophages, inhibited their microbicidal activity.
REFERENCES
Moll, H., Flohé, S. and Blank, C. 1995. Langerhans cells in cutaneous leishmaniasis. In: Moll H., ed. The immune functions of epidermal Langerhans cells. Austin: R.G. Landes. 159.
Moll, H., Ritter, U., Flohé, S., Erb, K., Bauer, S. and Blank, C. 1996. Cutaneous leishmaniasis: a model for analysis of the immunoregulation by accessory cells. Med. Microbiol. Immunol. 184:163.
Blank, C., Fuchs, H., Rappersberger, K., Röllinghoff, M. and Moll, H. 1993. Parasitism of epidermal Langerhans cells in experimental cutaneous leishmaniasis with Leishmania major. J. Infect. Dis. 167:418.
Blank, C., Bogdan, C., Bauer, C., Erb, K. and Moll, H. 1996. Murine epidermal Langerhans cells do not express inducible nitric oxide synthase. Eur. J. Immunol. 26:792.
Reis e Sousa, C., Sher, A. and Kaye, P. 1999. The role of dendritic cells in the induction and regulation of Immunity to microbial infection. Curr. Opin. Immunol. 11:392.
Overath, P. and Aebischer, T. 1999. Antigen presentation by macrophages harboring intravesicular pathogens. Parasitol. Today. 15:325.
WHO. 1990. World Health Organization Technical Report Series. 793:1.
Dedet, J. 1999. In: “Les leishmanioses. Ed. Ellipses AUPELF/UREF.
Bradley, D. J., 1987. Genetics of susceptibility and resistance in the vertebrate host. In «The leishmaniasis in Biology and Medicine» (W. Peters and R. Killick-Kendrick, ed). 2:551. Academic Press, London.
Cellier, M., Belouchi, A. and Gros, P. 1996. Resistance to intracellular infection comparative genome analysis on NRAMP. Trends Genet. 12:201.
Supeck, F., Supekova, L., Nelson, H. and Nelson, N. 1996. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc. Natl. Acad. Sci. USA. 93:5105.
Zwilling, B. S., Kuhn D. E., Wikoff, L., Brown, D. and Lafuse, W. 1999. Role of iron in Nramp 1-mediated inhibition of mycobacterial growth. Infect. Immunol. 67:1386.
Blackwell, J. M. Leishmania donovani infection in heterozygous and recombinant H-2 haplotype mice. Immunogenetics 1983;18:101.
Moulia, C., Le Brun, N. and Renaud, F. 1996. Mouse-Parasite interactions: from gene to population. Adv. Parasitol. 38:119.
Roberts, M., Alexander, J. and Blackwell, J. M. 1989. Influence of Lsh, H-2 and H-11-linked gene on visceralization and metastasis associated with Leishmania mexicana infection in mice. Infect. Immunol. 57:875.
Roberts, L. J., Baldwin, T. M., Curtis,J. M., Handman, E. and Foote, S. J. 1997. Resistance to Leishmania major is linked to the H-2 region on chromosome 17 and to chromosome 9. J. Exp. Med. 9:1705.
Roberts L. J., Baldwin T. M., Speed T. P., Handman E., Foote S. J. 1999. Chromosomes X, 9, and the H2 locus interact epistatically to control Leishmania major infection. Eur. J. Immunol. 29:3047.
Handman, E., Ceredig, R. and Mitchell, G. F. 1979. Murine cutaneous leishmaniasis: disease patterns in intact and nude mice of various genotypes and examination of some differences between normal and infected macrophages. J. Exp. Biol. Med. 57:9.
Mock, B. A., Fortier, A. H., Potter, M., Blackwell, J. and Nacy, C.A. 1985. Genetic control of systemic Leishmania major infection: identification of sublime differences for susceptibility to disease. Curr. Top. Microbiol. Immunol. 122:115.
Mock, B., Blackwell, J., Hilgers, J., Potter, M. and Nacy, C.A. 1993. Genetic control of systemic Leishmania major infection in congenic, recombinant inbred and F2 population of mice. Eur. J. Immunogen. 20:335.
Blackwell, J. M. and Alexander, J. 1986. Different host genes recognise and control infection with taxonomically distinct Leishmania species. In « Proceedings of an International Symposium on Taxonomy and Physiology of Leishmania » (J.A. Rioux, ed.). 211. Louis-jean Imprimerie, Montpellier.
Roberts, M., Alexander, J. and Blackwell, J. M. 1990. Genetic analysis of Leishmania mexicana infection in mice: single gene (Scl-2) controlled predisposition to cutaneous lesion development. J. Immunogen. 17:89.
Alexander, J. 1988. Sex differences and cross-immunity in DBA/2 mice infected with L. mexicana and L. major. Parasitology. 96:297.
Gulshan, S., McCruden, A. B., Stimson, W. H. 1990. Oestrogen receptors in macrophages. Scand. J. Immunol. 31:691.
DeTolla, L. J., Semprevivo, L. H., Polczuk, N. C. and Passmore, H. C. 1980. Genetic control of acquired resistance to visceral leishmaniasis in mice. Immunogenetics. 10:353.
DeTolla, L. J., Scott, P. A. and Farrell, J. P. Single gene control of resistance to cutaneous leishmaniasis in mice. Immunogenetics 1981;14:29.
Roberts, M., Kaye, P. M., Milon, G. and Blackwell, J. M. 1988. Studies of immune mechanisms in H-11-linked genetic susceptibility to murine visceral leishmaniasis. IN “Leishmaniasis: The current status and new strategies for control” (D.T. Hart, ed), NATO-ASI series A. 163:259. Plenum Press, New York.
Mosmann, T. R., Cherwinski, I. I., Bond, M. W., Giedlin, M. A. and Coffman, R. L. 1986. Two types of murine helper T cell clone. I: Definition according to profiles of lymphokines activities and secreted proteins. J. Immunol. 136:2348.
Mosmann, T. R. and Coffman, R. L. 1989. Th1 and Th2 cells: different patterns of lymphokines secretion lead to different functional properties. Annu. Rev. Immunol. 7:145.
Locksley, R. M., Heinzel, F. P., Sadick, M. D., Holaday, B. J. and Gardner, K. D. 1987. Murine cutaneous leishmaniasis. Susceptibility correlates with differential expansion of helper T cell subsets Ann Inst Pasteur/Immunol. 138:744.
Scott, P., Natovitz, P., Coffman, R. L., Pearce, E. and Sher, A. 1988. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective Immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigen. J. Exp. Med. 168:1675.
Locksley, R. M. and Scott, P. 1991. Helper T-cell subsets in mouse leishmaniasis: induction, expansion and effector function. Immunol. Today. 12:A58.
Mocci, S., Coffman, R. L. 1997. The mechanism of in vitro T helper cell type 1 to T helper cell type 2 switching in highly polarized Leishmania major-specific T cell populations. J. Immunol. 158:1559.
Blackwell, J. M. 1996. Genetic susceptibility to leishmanial infections: studies in mice and man. Parasitology. 112 Suppl:S67-74. Review.
Green, S. J., Meltzer, M. S., Hibbs, J. B. and Nacy, S. A. 1990. Activates macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. J. Immunol. 144:278.
Assreuy, J., Cunha, F. Q., Epperlein, M., Noronha-Dutra, A., O’Donnell, C. A., Liew, F. Y., Moncada, S. 1994. Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major. Eur. J. Immunol. 24:672.
Stenger, S., Thüring, H., Röllinghoff, M. and Bogdan, C. 1994. Tissue expression of inducible nitric oxide synthase is clossely associated with resistance to Leishmania major. J. Exp. Med. 180:783.
Stenger, S., Donhauser, N., Thürin, H., Röllinghoff, M. and Bogdan, C. (1996). Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J. Exp. Med. 183:1501-1514.
Wei, X. Q., Charles, I. G., Smith, A. Feng, G. J., Huang, F. P., Xu, D., Muller, W., Moncada, S. and Liew, F. Y. 1995. Altered immune responses in mice lacking inductible nitric oxide synthase. Nature 375:408.
Bogdan, C. and Nathan, C. 1993. Modulation of macrophage function by TGF-b, IL-4 and IL-10. Ann. N.Y. Acad. Sci. 685:713.
Crawford, R. M., Leiby, D. A., Green, S. J., Nacy, C. A., Fortier A.H., Meltzer M.S. 1994. Macrophage activation: a riddle of immunological resistance. Immunol. Ser. 60:29.
Wang, Z. E., Reiner, S. L., Zheng, S., Dalton, D. K. and Locksley, R. M. 1994. CD4+ effector cells default to the Th2 pathway in interferon gamma-deficient mice infected with Leishmania major. J. Exp. Med. 179:1367.
Swihart, K., Fruth, U., Messmer, N., Hug, K., Behin, R., Huang, S., Del Giudice, G., Aguet, M. and Louis, J. L. 1995. Mice from a genetically resistant background lacking the interferon gamma receptor are susceptible to infection with Leishmania major but mount a polarized T helper 1-type CD4+ T cell response. J. Exp. Med. 181:961.
Kopf, M., Brombacher, F., Kohler, G., Kienzle, G., Widmann, K. H., Lefrang, K., Humborg, C., Ledermann, B. and Solbach, W. 1996. IL-4 deficient BALB/c mice resist infection with Leishmania major. J. Exp. Med. 184:1127.
Lohoff, M., Ferrick, D., Mittrücker, H. W., Duncan, G. S. Bischoff, S., Röllinghoff, M. and Mak, T. W. 1998. Interferon regulatory factor-1 is required for a T helper 1 immune response in vivo. Immunity 6:681.
Liew, F. Y., Li, Y. and Millot, S. 1990. Tumor necrosis factor (TNF-a) in leishmaniasis. II; TNF-a induced macrophage leishmanicidal activity is mediated by nitric oxide from L-arginine. Immunology 71:556.
Nacy, C. A., Meierovics, A. I., Belosevic, M. and Green, S. J. 1991. Tumor necrosis factor-alpha: central regulatory cytokine in the induction of macrophage antimicrobial activities. Pathobiology. 59:182.
De Kossodo, S., Grau, G. E., Louis, J. A. and Muller I. 1994. Tumor necrosis factor alpha (TNF-alpha) and TNF-beta and their receptors in experimental cutaneous leishmaniasis. Infect. Immun. 62:1414.
Gessner, A., Vieth, M, Will, A., Schröppel, K. and Röllinghoff M. 1993. IL-7 enhances antimicrobial activity against Leishmania major in murine macrophages. Infect. Immun. 61:4008.
Vieira, L. Q., Goldschmidt, M., Nashleanas, M., Pfeiffer, K., Marck, T. and Scott, P. 1996. Mice lacking the TNF receptor p55 fait to resolve lesion caused by infection with Leishmania major, but control parasite replication. J. Immunol. 157:827.
Locksley, R. M., Pingel, S., Lacy, D., Wakil, A. E., Bix, M. and Fowell, J. 1999. Susceptibility to infectious disease: Leishmania as a paradigm. J. Infect. Dis. 179(Supp) :S305.
Saha, B., Chattopadhyay, S., Germond, R., Harlan, D. M., Perrin, P. J. 1998. CTLA4 (CD152) modulates the Th subset response and alters the course of experimental Leishmania major infection. Eur. J. Immunol. 28:4213.
Elloso, M. M. and Scott, P. 1999. Expression and contribution of B7-1 (CD80) and B7-2 (CD86) in the early immune response to Leishmania major infection. J. Immunol. 162:6708.
Scharton, T. M. and Scott, P. 1993. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med. 178:567-577.
Laskay, T., Röllinghoff, M. and Solbach, W. 1995. Early parasite containment is decisive for resistance to Leishmania major infection. Eur. J. Immunol. 25:2220-2227.
Satoskar, A. R., Stamm, L. M., Zhang, X., Satoskar, A. A., Okano, M., Terhorst, C., David, J. R. and Wang, B. 1999. Mice lacking NK cells develop an efficient Th1 response and control cutaneous Leishmania major infection. J. Immunol. 162:6747-6754.
Heinzel, F. P., Rerko, R. M., Ahmed, F. and Pearlment, E. 1995. Endogenous IL-12 is required for control of Th2 cytokine responses capable of exacerbating leishmaniasis in normal resistance mice. J. Immunol. 155:730-739.
Mattner, F., Magram, J., Ferrante, J., Lanouis, P., DiPadova, K., Behin, R., Gately, M. K., Louis, J. A. and Alber, G. 1996.Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur. J. Immunol. 26:1553-1559.
Park, A. Y., Hondowicz, B. D. and Scott, P. 2000. IL-12 required to maintain a Th1 response during Leishmania major infection. J. Immunol. 165:896-902.
Reiner, S. L., Zheng, S., Wang, Z. E., Stowring, L. and Locksley, R. M. 1994. Leishmania promastigotes evade interleukin 12 (IL-12). induction by macrophage and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. J. Exp. Med. 179:447-456.
Xiaojing, M., Aste-Amezaga, M., Gri, G., Gerosa, F., Trinchieri, G. 1997. Immunomodulatory functions and molecular regulation of IL-12. In “IL-12”; ed L. Adorini, Milan, pp 1-22.
Skeiki, Y. A. W., Guderian, J. A., Benson, D. R., Bacelar, O., Carvalho, E. M., Kubin, M., Badaro, R., Trinchieri, G. and Reed, G. 1995. A recombinant Leishmania antigen that stimulates human peripheral blood mononuclear cells to express a Th1-type cytokine profile and to produce IL-12. J. Exp. Med. 181:1527-1537.
Skeiki, Y. A. W., Kennedy, M., Kaufman, D., Borges, M. M., Guderian, J. A., Scholler, J. K., Ovendale, P. J., Picha, K. S., Morrissey, P. J., Grabstein, K. H., Campos-Neto, A. and Reed, S. G. 1998. LeIF: A recombinant Leishmania protein that induces an IL-12-mediated Th1 cytokine profile. J. Immunol. 161:6171-6179.
Mosser, D. and Karp, Ch. 1999. Receptor mediated subversion of macrophage cytokine production by intracellular pathogens. Curr. Opin. Immunol. 11:406-411.
Carrera, L., Gazzinelli, R. T., Badolato, R., Hieny, S., Müller, W., Kühn, R. and Sacks, D. L. 1996. Leishmania promastigotes inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J. Exp. Med. 183:515-526.
Marth, T. and Kelsall, B. L. 1997. Regulation of interleukin-12 by complement receptor 3 signaling. J. Exp. Med. 185: 1987-1985.
Sutterwala, F. S., Noel, G. J., Glynes, R. and Mosser, D. M. 1997. Selective suppression of interleukin-12 induction after macrophages receptor ligation; J. Exp. Med. 185:1977-1985.
Vieira, L. Q., Hondowicz, B. D., Afonso, L. C. C., Wysocka, M., Trinchieri, G. and Scott, P. 1994. Infection of Leishmania major induces interleukin 12 production in vivo. Immunol. Lett. 40:157-161.
Scharton-Kersten, T., Afonso, L. C., Wysocka, M., Trinchieri, G. and Scott, P. 1995. IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J. Immunol 154:5320-5330.
Flohe, S. B., Bauer, C., Flohe, S., Moll, H. 1998. Antigen-pulsed epidermal Langerhans cells protect susceptible mice from infection with the intracellular parasite Leishmania major. Eur. J. Immunol. 28:3800-3811.
Ferlin, W. G., von der Weid, T., Coftrez, F., Ferrick, D. A., Coffman, R. L, Howard, M. C. 1998. The induction of a protective response in Leishmania major-infected BALB/c mice with anti-CD40 mAb. Eur. J. Immunol. 28:525.
Kamanaka, M,. Yu, P., Yasui, T., Yoshida, K., Kawabe, T., Horii, T., Kishimoto, T., and Kikutani, H. 1996. Protective role of CD40 in Leishmania major infection at two distinct phases of cell-mediated Immunity. Immunity 4:275-281.
Campbell, K. A., Ovendale, P. J., Kennedy, M. K., Fanslow, W. C., Reed, S. G. and Malizewski, C. R. 1996. CD40 ligand is required for protective cell-mediated Immunity to Leishmania major. Immunity 4:283-289.
Soong, L., Xu, J., Grewa, L. I. S., Kima, P., Sun, J., Longley B.J., Ruddle, N., McMahon-Prat, D., and Flavel, R.A. 1996. Disruption of CD40-CD40 ligand interaction results in enhanced susceptible to Leishmania amazonensis infection. Immunity 4:263-273.
Diefenbach, A., Schindler, H., Rollinhoff, M., Yokoyama, W.M., Bogdan, C. 1999. Requirement for type 2 NO synthase for IL-12 signaling in innate immunity. Science 7;284(5416):951.
Yagita, H., Hanabuchi, S. Asano, Y., Tamura, T., Nariuchi, H. and Okumura, K. 1995. Fas-mediated cytotoxicity; a new immunoregulatory and pathogenic function of Th1 CD4+ T cells. Immunol. Rev 146:223-239.
Conceicao-Silva F., Hahne M., Schroter M., Louis J. and Tschopp J. 1998. The resolution of lesions induced by Leishmania major in mice requires a functional Fas (APO-1, CD95) pathway of cytotoxicity. Eur. J. Immunol. 28:237-245.
Huang, F. P., Xu, D., Esfandiari, E. O., Sands, W., Wei, X. Q., Liew, F. Y. 1998. Mice defective in Fas are highly susceptible to Leishmania major infection despite elevated IL-12 synthesis, strong Th1 responses, and enhanced nitric oxide production. J. Immunol. 160:4143-4147.
Vester, B., Muller, K., Solbach, W. and Laskay, T. 1999. Early gene expression of NK cell-activating chemokines in mice resistant to Leishmania major. Infect. Immun. 67:3155-3159.
Chan, M. M. (1993). T cell response in murine Leishmania mexicana amazonensis infection: production of IFN-g by CD8+ cell. Eur. J. Immunol. 23:1181-1184.
Muller, I., Kropl, P., Etges, R. J. and Louis, J. A. 1993. Gamma interferon response in secondary Leishmania major infection: role of CD8+ T cell. Infect. Immun. 61:3730-3738.
Overath, P. and Harbecke, D. 1993. Course of Leishmania infection in b2-microglobulin-deficient mice. Immunol. Lett. 37:13-17.
Wang, Z. E., Reiner, S. L., Hatam, F., Heinzel, F. P., Bouvier, J., Turck, C. W. and Locksley, R. M. 1993. Targeted activation of CD8 cells and infection of b2-microglobulin deficient mice fail to confirm a primary protective role for CD8 cells in experimental leishmaniasis. J. Immunol. 151:2077-2086.
Antoine, J. C., Prina, E., Lang, T. and Courret, N. 1998. The biogenesis and properties of the parasitophorous vacuoles that harbor Leishmania in murine macrophages. Trends. Microbiol. 7:392-401.
Liew, F. Y. and O’Donnell, C. A. 1993. Immunology of leishmaniasis. Adv. Parasitol. 32:162-192.
Reiner, S. L. and Locksley, R. M. 1995. The regulation of Immunity Leishmania major. Annu. Rev. Immunol. 13:151-177.
Sadick, M. D., Heinzel, F. P., Holaday, B. J., Pu, R. T., Dawkins, R. S., Locksley, R. M. 1990. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. J. Exp. Med. 171:115-27.
Chatelain, R., Varkila, K. and Coffman, R. L. 1992. IL-4 induces a Th2 response to Leishmania major-infected mice. J. Immunol. 148:1182-1187.
Gessner, A., Schröppel, K., Will, A., Enssler, K. H., Lauffer, L. and Röllinghoff, M. 1994. Recombinant soluble IL-4 receptor acts as an antagonist of IL-4 in murine cutaneous leishmaniasis. Infect. Immun. 62:4112-4117.
Leal, L. M., Moss, C. C., Kuhn, D. W., Muller, R. and Liew, F. Y. 1993. Interleukin-4 transgenic mice of resistant background are susceptible to Leishmania major infection. Eur. J. Immunol. 23:566-569.
Gabaglia C. R., Pedersen B., Hitt, M., Burdin, N., Sercarz, E. E., Graham, F. L., Gauldie, J., Braciak, T. A. 1999. A single intramuscular injection with an adenovirus-expressing IL-12 protects BALB/c mice against Leishmania major infection, while treatment with an IL-4-expressing vector increases disease susceptibility in B10.D2 mice. J. Immunol. 162:753-760.
Launois, P., Louis J. A., Milon G. 1997. The fate and persistence of Leishmania major in mice of different genetic backgrounds: an example of exploitation of the immune system by intracellular parasites. Parasitology 115 Suppl:S25-32.
Himmelrich, H., Parra-Lopez, C., Tacchini-Cottier, F., Louis, J. A., Launois, P. 1998. The IL-4 rapidly produced in BALB/c mice after infection with Leishmania major down-regulates IL-12 receptor beta 2-chain expression on CD4+ T cells resulting in a state of unresponsiveness to IL-12. J. Immunol. 161:6156-6163.
Roberts, M., Mock, B. A., Blackwell, J. M. 1993. Mapping of genes controlling Leishmania major infection in CXS recombinant inbred mice. Eur. J. Immunogen. 20:349-362.
Gorham, J. D., Guler, M. L., Steen, R. G., Mackey, A. J., DalyM. J., Frederick, K., Dietrich, W.F. and Murphy, K.M. 1996. Genetic mapping of a murine locus controlling development of T helper 1/T helper 2 type responses. Proc. Natl. Acad. Sci. USA. 93:12467-12472.
Güler, M. L., Gorham, J. D., Hsieh, Ch-S., Mackey, A. J., Steen, R.G., Dietric, W.F. and Murphy, K.M. 1996. Genetic susceptibility to Leishmania : IL-12 responsiveness in Th1 cell development. Science 271:984-990.
Launois, P., Otheki, T., Swihart, K., MacDonald, H. R. and Louis, J. A. 1995. In susceptible mice, Leishmania major induce very rapid interleukin-4 production by CD4+ T cells which are NK1.1-. Eur. J. Immunol. 25:3298-3307.
von der Weid, T., Beebe, A. M., Roopenian, D. C., Coffman, R. L. 1996. Early production of IL-4 and induction of Th2 responses in the lymph node originate from an MHC class I-independent CD4+NK1.1- T cell population. J. Immunol. 157:4421-7.
Brown, D. R., Fowell, D. J., Corry, D. B., Wynn, T. A., Moskovitch, N. H., Chever, A. W., Locksley, R. M., Reiner, S. L. 1996. Beta 2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J. Exp. Med. 184(4):1295.
Mougneau, E., Altare, F., Wakil, A.E., Zheng, S., Coopola, T., Waldmann, R., Locksley, R. M. and Glaichenhaus, N. 1995. Expression cloning of a protective Leishmania antigen. Science 268:563.
Julia, V., Rassoulzadegan, M. and Glaichenhaus, N. 1996. Resistance to Leishmania major induced by tolerance to a single antigen. Science 274:421.
Reiner, S. L., Wang, Z. E., Hatam, F., Scott, P. and Locksley, R. M. 1993. Th1 and Th2 cell antigen receptors in experimental leishmaniasis. Science 259:147.
Himmelrich, H., Pascal, L., Maillard, I., Biedermann, T., Tacchini-Cottier, F., Locksley, R., Röcken, M. and Louis, J. 2000. In BALB/c mice, IL-4 production during the initial phase of infection with Leishmania major is necessary and sufficient to instruct Th2 cell development resulting in progressive disease. J. Immunol. 164:4819.
Julia, V., McSorley, S. S., Malherbe, L., Breittmayer, J. P., Girard-Pipau, F., Beck, A. and Glaichenhaus, N. 2000. Priming by microbial antigens from the intestinal flora determines the ability of CD4+ T cells to rapidly secrete IL-4 in BALB/c mice infected with Leishmania major. J. Immunol. 165:5637.
Aguilar-Torrentera, F., Glaichenhaus, N., Laman, J. and Carlier, Y. 2001. T-cell responses to immunodominant LACK antigen do not play a critical role in determining susceptibility of BALB/c mice to Leishmania mexicana. Infect. Immun. 69:617.
Noben-Trauth, N., Kropf, P. and Muller, I. 1996. Susceptibility to Leishmania major infection in the IL-4 deficient mice. Science 271:987.
Noben-Trauth, N., Paul, W.E. and Sacks, D. 1999. IL-4 and IL-4 receptor-deficient BALB/c mice reveal differences in susceptibility to L. major parasite substrain. J. Immunol. 162:6132.
Scott, P., Eaton, A., Gause, W. C., di Zhou, X., Hondowicz, B,. 1996. Early IL-4 production does not predict susceptibility to Leishmania major. Exp. Parasitol. 84:178.
Dent, A. L., Doherty, T. M., Paul, W. E., Sher, A. and Staudt, L. M. 1999. BCL-6-deficient mice reveal an IL-4-independent, STAT6-dependent pathway that controls susceptibility to infection by Leishmania major. J. Immunol. 163:2098.
Zurawski, G. and de Vries, J. E. 1994. Interleukin 13 elicits a subset of the activities of its close relative IL-4. Stem Cells. 12:169.
Zurawski, S. M., Chomarat, P., Dijossou, O., Bidaud, C., McKenzie, A. N., Miossec, P., Nanchereau, J. and Zurawski, G. 1995. The primary binding subunit of human IL-4 receptor is also a component of the IL-13 receptor. J. Biol. Chem. 270:13869.
Takeda, K., Kamanaka, T., Tanaka, T., Kishimoto, T. and Akira, S. 1996. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice. J. Immunol. 157:3220-3222.
Matthews, D. J., Emson, C. L., McKenzie, G. J., Jolin, H. E., Blackwell, J. M. and McKenzie, A. N. 2000. IL-13 is a susceptibility factor for Leishmania major infection. J. Immunol. 164:1458.
Heinzel, F. P., Rerko, R. M., Hujer, A. M. and Maier, R. A. 1998. Increased capacity for IL-2 synthesis parallels disease progression in mice infected with Leishmania major. Infect. Immun. 66:4537.
Heinzel, F. P., Rerko, R. M., Hata, M. and Locksley, R. M. 1993. IL-2 is necessary for the progression of leishmaniasis in susceptible murine hosts. J. Immunol. 150:3924.
Schonlau, F., Scarffetter-Kocanek, K. Grabbe, S., Pietz, B., Sorg, C. and Sunderkotter, C. 2000. In experimental leishmaniasis deficiency of CD18 results in parasite dissemination associated with altered macrophage functions and incomplete Th1 cell response. Eur. J. Immunol 30:2729.
Chan, S. H., Perussia, B., Gupta, J. W., Kobayashi, M., Pospisil, M., Young, H. A, Wolf, S. F., Young, D., Clark, S. C., Trinchieri, G. 1991. Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J. Exp. Med. 173:869.
Papiernik, M., de Moraes, M. L., Pantoux, C., Vasseur, F., Penit, C. 1998. Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 10:371.
Belosevic, M., Finbloom, D. S., Meltzer, M. S., Nacy, C. A. 1990. IL-2 a cofactor for induction of activated macrophage resistance to infection. J. Immunol. 145:831.
Nelson, B. J., Danielpour, D., Rossio, J. L., Turpin, J., Nacy C. A. 1994. Interleukin-2 suppresses activated macrophage intracellular killing activity by inducing macrophages to secrete TGF-beta. J. Leukoc. Biol. 55:81.
Mazingue, Ch., Cottrez-Detoeuf, F., Louis, J., Kweider, M., Auriault, C. and Capron, A. 1989. In vitro and in vivo effects of IL-2 on the protozoan parasite Leishmania. Eur. J. Immunol. 19:487.
Lezama-Davila, C. M., Williams, D. M., Gallagher, G. and Alexander, J. 1992. Cytokine control of Leishmania infection in the BALB/c mouse: enhancement and inhibition of parasite growth by local administration of IL-2 or IL-4 is species and time dependent. Parasite. Immunol. 14:37.
Barral-Netto, M., Barral, A., Brownell, C. E., Skeiki, Y. A., Ellingsworth, L. R., Twardzik, D. R. and Reed, S. G. 1992. Transforming growth factor-beta in leishmanial infection: a parasite escape mechanism. Science 257:545.
Li, J., Hunter, Ch. A. and Farrell, J. P. 1992. Anti-TGF-b treatment promotes rapid healing of Leishmania major infection in mice by enhancing in vivo nitric oxide production. J. Immunol. 162:974.
Skeen, M. J., Miller, M. A., Shinnick, T. M. and Ziegler, H. K. 1996. Regulation of murine macrophage IL-12 production: activation of macrophages in vivo restimulation in vitro and modulation by other cytokines. J. Immunol. 156:1196.
Takeuchi, M., Alard, P. and Streilen, J. W. 1998. TGF-b promotes immune deviation by altering accessory signals of antigen-presenting cells. J. Immunol. 160:1589-1597.
Bogdan, C., Paik, J., Vodovotz, Y. and Nathan, C. 1992. Contrasting mechanisms for suppression of macrophage cytokine release by Transforming growth factor-b and IL-10. J. Biol. Chem. 267:23301.
Vodovotz, Y., Bogdan, C., Paik, J., Xie, Q. W. and Nathan, C. 1993. Mechanism of suppression of macrophage nitric oxide released by TGF-b. J. Exp. Med. 178:605.
Heinzel, F. P., Sadick, M.D., Mutha. S. S. and Locksley, R. M. 1991. Production of interferon-g, interleukin 2, interleukin 4, interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc. Natl. Acad. Sci. USA. 88:7011.
Vieth, M., Will, A., Schropprl, K., Rollinghoff, M. and Gessner, A. 1994. IL-10 inhibits antimicrobial activity against Leishmania major in murine macrophages. Scand. J. Immunol. 156 :644.
Powrie, F., Menon, S. and Coffman, R. L. 1993. IL-4 and IL-10 sinergize to inhibit cell-mediated Immunity in vivo. Eur. J. Immunol. 23:2223.
Chatelain, R., Mauze, S. and Coffman, R. 1999. Experimental Leishmania major infection in mice: role of IL-10. Parasite. Immunol. 21:211.
Coffman R.L., Varkila K. Scott P. and Chatelain R. 1991. Role of cytokines in the differentiation of CD4+ T-cell subsets in vivo. Immunol. Rev. 123:189.