2012, Number 2
<< Back Next >>
Patol Rev Latinoam 2012; 50 (2)
Overview of Stereological Methods and their Applications for Cell Biology
Pérez-Olvera O, Arellano BS, Rodríguez MHA
Language: Spanish
References: 21
Page: 63-71
PDF size: 531.08 Kb.
ABSTRACT
In Medicine, a large number of investigations require a morphometric analysis of an organ, tissue or cell and/or the study of their internal composition. Stereological methods are the result of mathematical reasoning explained in applicable formulas designed to determine parameters such as volume density, surface density, numerical density and length density, from bidimensional images. Changes in cellular function, for example, are frequently related to variations in the size of cells and nuclei, or to changes in the number of specific cellular organelles involved in the process. A brief review of the physical-mathematical principles that gave rise to the classic stereological methods is presented. We comment upon a series of conceptions on stereological principles over the past few decades in order to prevent under or overestimations in the appraisal of the results that the method allows. The stereological methods more frequently used are also examined. Currently software development simplifies the application of morphometric studies, whose main advantage is that they allow quantifications in a short time.
REFERENCES
Cruz-Orive LM. Avances recientes en estereología y su aplicación en biología celular. Actas del II Congreso de la Sociedad Española de Biología Celular. E-Barcelona 1987;2:16-19.
Delesse MA. Procedé mécanique pour déterminer la composition des roches. C,R, Hebd Séan Acad Sci Paris, 1847;25:544-546.
Glagoleff AA. On the geometrical methods of quantitative mineralogic analysis of rocks. Trudy Inst Prikl Miner Metall 1933;59:1-200.
Charlkley HW. Methods for the quantitative morphologic analysis of tissues. J Nat Cancer Inst 1943;4:47.
Saltikov SA. Stereometrische Metallographie.Leipzig. VEB Deutscher Verlag 1945;1-149.
Smith CS Guttman L. Measurement of internal boundaries in three dimensional structures by random sectioning. Trans Metall Soc AIME 1953;10-300.
Henning A. Bestimung der oberfläche beliebig geformeter körper mit besonderer anwendug auf körperhaufen im mikroskopischen bereich. Microskopie 1956;11:1-103
Weibel ER. Stereological Methods. Practical Methods for Biological Morphometry. Vol.1. Londres, Academic Press, 1979;9-257.
Wicksell SD. The corpuscle problem I. Biometrika 1925;17- 84.
De Hoff RT, Rhines FN. Quantitative Microscopy. Nueva York, McGraw-Hill, 1968;9-80.
De Hoff RT, Rhines FN. Determination of number of particles per unit volume from measurements made on random plane sections: the general cylinder and the ellipsoid. Trans Metall Soc AIME 1981;221: 975.
Wicksell SD. The corpuscle problem II. Biometrika 1926;18-151.
Weibel ER. Stereological Methods. Theoretical Foundations Vol.2. Londres, Academic Press, 1980;20-200.
Cruz-Orive LM, Weibel ER. Sampling designs for stereology. J Microsc 1981;122:235-257.
Cruz-Orive LM, Hunziker EB. Stereology for anisotropic cells: application to growth cartilage. J Microsc 1986;143:47-80.
Baddeley AI, Gundersen HJG, Cruz-Orive LM. Estimation of surface area from vertical sections. J. Microsc 1986;142:259-276.
Phylofsky EM Hilliard JE. The measurement of the orientation distribution of lineal and areal arrays. Quart. J Appl Math 1969;27:79-86.
Hyde DM, Buss DD. Morphometry of the coronay microvasculature of the canine left ventricle. Am J Anat 1986;177:415-425.
Hunziker EB, Cruz-Orive LM. Consistent and efficient delineation of reference space for light microscopical stereology using a laser microbeam system. J Microsc 1986;142:1,95-99.
Scherle WF. A simple method for volumetry of organs in quantitative stereology. Mikroskopie 1970;26-57.
Mayhew T.M., Gundersen HJG. If you assume, you can make an ass out of u and me’: a decade of the dissector for stereological counting of particles in 3D space. J. Anat 1996;1-15.