2011, Number 4
<< Back Next >>
Rev Cubana Invest Bioméd 2011; 30 (4)
New conceptual and mathematical forms for the contour of volume wave of arterial pulse
Pascau SA, Fernández-Britto RJE, Allen J
Language: Spanish
References: 23
Page: 487-500
PDF size: 490.94 Kb.
ABSTRACT
Introduction: The analysis of volume wave contour of arterial pulse has been useful for non-invasive diagnosis of cardiovascular diseases, but the pathophysiological origins contributing to this contour are not totally explained. The objective of present paper was to find the coincidence level of a new simple conceptual form, based on the hemodynamic strengths regarding a new mathematical form applied to different classes of volume waves of arterial pulse in toe fingers.
Methods: The proposal of conceptual form was based on that this contour is the addition of pairs of action hemodynamic strengths gradients from the heart, aorta and the peripheral arterial zone and of the reactions coming from study musculoelastic arterial wall. The mathematical form was designed as a non-lineal programming problem to find the six numeral unknown quantities of each pair of gradients, under non-lineal restriction based on its temporary relations. The contours from toe fingers were registered in patients with four potential classes of volume wave known contours of arterial pulse. The fitting quality of 4 403 experimental above mentioned contours was analyzed versus the arterial pulse volume resulting from mathematical form of 123 registries of 14 patients (7 women).
Results: There was predominance of III class, the I and II ones were frequent in patients with less cardiovascular risk and the IV class in those of great risk. The 64 % of the wave volume of arterial pulse had a quality fitting> 95 % and the 36 % had the presence of oscillating waves from skeletal muscle.
Conclusions: The coincidence of both forms is accepted to characterize in a morphologic way the contour of any class of wave volume of arterial pulse.
REFERENCES
Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28:R1-39.
Gunarathne A, Patel JV, Hughes EA, Lip GY. Measurement of stiffness index by digital volume pulse analysis technique: clinical utility in cardiovascular disease risk stratification. Am J Hypertens. 2008;21(8):866-72.
Gunarathne A, Patel JV, Gammon B, Hughes EA, Lip GY. Impact of mean arterialblood pressure on higher arterial stiffness indices in South Asians compared to white Europeans. J Hypertens. 2008;26(7):1420-6.
Wykretowicz A, Trojnarska O, Guzik P, Katarzyska A. Arterial stiffness in adult patients with cyanotic congenital heart disease. Congenit Heart Dis. 2007;2(2):134-8.
Chen JY, Tsai WC, Lin CC, Huang YY, Hsu CH, Liu PY, et al. Stiffness indexderived from digital volume pulse as a marker of target organ damage in untreated hypertension. Blood Press. 2005;14(4):233-7.
Millasseau SC, Kelly RP, Ritter JM, Chowienczyk PJ. Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clinical Science. 2002;103:371-7.
Millasseau SC, Ritter JM, Takazawa K, Chowienczyk PJ. Contour analysis of the photoplethysmographic pulse measured at the finger. Journal of Hypertension. 2006;24:1449-6.
Loukogeorgakis S, Dawson R, Phillips N, Martyn CN, Greenwald SE. Validation of a device to measure arterial pulse wave velocity by a photoplethysmographic method. Physiol Meas. 2002;23:581-96.
Fernández-Britto JE. La lesión aterosclerótica: estado del arte a las puertas del siglo XXI. Rev Cubana Invest Bioméd. 1998;17(2):112-27.
Fernández-Britto JE, Castillo Herrera JA, Taquechel N, Barriuso A, Vilaú F. Aterosclerosis, colesterol y pared arterial: algunas reflexiones. Rev Cubana Invest Bioméd. 1999;18(3):169-75.
Fernández-Britto JE, Barriuso A, Chiang MT, Pereira A, Xavier HT, Castillo Herrera JA, et al. La señal aterogénica temprana: estudio multinacional de 4 934 niños y jóvenes y 1 278 autopsias. Rev Cubana Invest Bioméd. 2005;24(3).
Quarteroni A, Tuveri M, Veneziani A. Computacional vascular fluid dynamics: problems, models and methods. Comput Visual Sci. 2000;2:163-97.
Fernández-Britto JE. La lesión aterosclerótica y la tríada de Virchow en el siglo XXI. VI Congreso virtual hispanoamericano de anatomía patológica. 2004. Disponible en: http://conganat.uninet.edu/6CVHAP/conferencias/conf_britto.html [visitado Octubre 2009].
Li J K-J. Physiology and structural of arteries. In: Li J K-J. Arterial circulation: physical principles and clinical applications. Totowa, NJ: Humana Press Inc.; 2000. p. 13-32.
Simón A, Castro A, Kaski JC. Avances en el conocimiento de la disfunción endotelial y su aplicación en la práctica clínica. Rev Cubana Med. 2001;40(3):212-22.
Li J K-J. Arterial pulse transmission characteristics. In: Li J K-J. Arterial circulation: physical principles and clinical applications. Totowa, NJ: Humana Press Inc.; 2000. 69-128.
Rubins U. Finger and ear photoplethysmogram waveform analysis by fitting with Gaussians. Med Biol Eng Comput. 2008;46(12):1271-6.
Cuadra M, Corzo A, Pascau A, Ferrer O, García JC, Hernández D, et al.ANGIODIN® PD 3000, sistema microcontrolado para el diagnóstico de afecciones vasculares. Primer Congreso Latinoamericano de Ingeniería Biomédica. Mazatlán, México: 1998.
Pascau A, Ferrer O. Generador de reportes de pruebas hemodinámicas para el diagnóstico de enfermedades vasculares periféricas. Rev Cubana de Inform Méd. 2006;6(1). Disponible en: http://www.cecam.sld.cu/pages/rcim/revista_10 /articulos_htm/generador.htm
Dawber TR, Thomas HE Jr., McNamara PM. Characteristics of the dicrotic notch of the arterial pulse wave in coronary heart disease. Angiology. 1973;24:244-55.
_____. MATLAB. The language of technical computing. Version 6,5. MathWorks. Inc. 1984-2002.
Kutner MH, Nachtsheim CJ, Neter J, Li W. Applied linear statistical models. McGraw-Hill: International Edition; 2005. 6th ed. ISBN 007-112221-4.
Ljung B, Sivertsson R. Vibration-Induced Inhibition of Vascular Smooth Muscle Contraction. Blood Vessels. 1975;12:38-52.