2011, Number 1
<< Back Next >>
Rev Cubana Invest Bioméd 2011; 30 (1)
Computational models of bone differentiation and adaptation
Narváez-Tovar CA, Velasco-Peña MA, Garzón-Alvarado DA
Language: Spanish
References: 71
Page: 126-140
PDF size: 77.04 Kb.
ABSTRACT
Authors review the available computational models of bone differentiation and
adaptation, emphasizing on the development achieved in this area during pas
years. The bone tissue study has increased in past decades due to rebirth of
mechanobiology, whose main paradigm is the influence of mechanical loads on the
tissues development, adaptation and maintenance. The major objective of present
paper is to emphasize la significance of computational mechanobiology in the bone tissue modeling and the need to keep on developing the experimental
mechanobiology to measure accurately the tissues properties and the more sensible
cellular features of computational models.
REFERENCES
Jee WSS. Integrated Bone Tissue Physiology: Anatomy and Physiology. En: Cowin SC. Bone Mechanics Handbook. 2da. ed. Boca Raton, Florida CRC Press;2001. p. 1-68.
Doblaré M, García JM, Gómez MJ. Modelling bone tissue fracture and healing: a review. Engineering Fracture Mechanics. 2004;71:1809-40.
Tovar A. Bone remodeling as a hybrid cellular automaton optimization process. Tesis doctoral. Indiana: Universidad de Notre Dame; 2004.
Cowin SC. Elastic properties of bone tissue. En: Lemaitre J. Handbook of materials behavior models. New York: Academic Press; 2001. p. 1048-56.
Lakes R. Viscoelastic properties of cortical bone. En: Cowin SC. Bone Mechanics Handbook, 2da. ed. Boca Ratón: CRC Press; 2001. 1-15.
Fondrk MT, Bahniuk EH, Davy DT, Michaels C. Some viscoplastic characteristics of bovine and human cortical bone. Journal of Biomechanics. 1988;21:623-30.
Cowin SC. On the modeling of growth and adaptation. En: Holzapfel GA, Odgen RW. Mechanics of biological tissue. New York: Springer; 2006. p. 29-46.
Van der Meulen MCH, Huiskes R. Why mechanobiology? A survey article. Journal of Biomechanics. 2002;35:401-14.
Pauwels F. Grundri einer Biomechanik der Frakturheilung. En: Memorias del 34th Kongress der Deutschen Orthop adischen Gesellschaft. Ferdinand Enke Verlag, Stuttgart, 1941. (Biomechanics of the Locomotor Apparatus traducido por Manquet P, FurlongR (eds.). Springer; 1980. 375-407.).
Carter DR, Wong M. The role of mechanical loading histories in the development of diarthrodial joints. Journal of Orthopaedic Research. 1988;6:804-16.
Carter DR, Beaupré GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clinical Orthopaedics. 1998;355:S41-55.
Giori NJ, Ryd L, Carter DR. Mechanical influences on tissue differentiation at bone-cement interfaces. Journal of Arthroplasty. 1995;10:514-22.
Carter DR, Beaupré GS. Skeletal Function and Form: Mechanobiology of Skeletal Development, Aging and Regeneration. Cambridge: University Press; 2001.
Shefelbine SJ, Carter DR. Mechanobiological predictions of growth front morphology in developmental hip dysplasia. Journal of Orthopaedic Research. 2004;22(2):346-52.
Garzón-Alvarado DA, García-Aznar JM, Doblaré M. The early bone epiphysis formation: a numerical simulation. Journal of Biomechanics. 2006;39:S642.
Garzón-Alvarado DA, García-Aznar JM, Doblaré M. A reaction-diffusion model for long bones growth. Biomech Model Mechanobiol. 2009;8(5):381-95.
Garzón-Alvarado DA, García-Aznar JM, Doblaré M. Appearance and location of secondary ossification centers may be explained by a reaction-diffusion mechanism. Computers in Biology and Medicine. 2009;39(6): 554-61.
Garzón-Alvarado DA, Peinado LM, Cárdenas RP. A mathematical model of epiphyseal development: hypothesis on the cartilage canals growth. Computer Methods in Biomechanics and Biomedical Engineering. 2010;1-8.
Isaksson H, Van Donkelaar CC, Huiskes R, Yao J, Ito K. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. Journal of Theoretical Biology. 2008;252:230-46.
Isaksson H, Van Donkelaar CC, Huiskes R, Yao J, Ito K. Determining the most important cellular characteristics for fracture healing using design of experiments. Journal of Theoretical Biology. 2008;255:26-39.
Isaksson H, Van Donkelaar CC, Ito K. Sensitivity of tissue differentiation and bone healing predictions to tissue properties. Journal of Biomechanics. 2009;42:555-64.
Andreykiv A, Van Keulen F, Prendergast PJ. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech Model Mechanobiol. 2008;7:443-61.
Geris L, Gerisch A, Vander Stolen J, Weiner R, Van Oosterwyck H. Angiogenesis in bone fracture healing: a bioregulatory model. Journal of Theoretical Biology. 2008;251:137-58.
González-Torres LA, Gómez-Benito MJ, Doblaré M, García-Aznar JM. Influence of the frequency of the external mechanical stimulus on bone healing: A computacional study. Medical Engineering & Physics. 2010;32:363-71.
Chen G, Pettet GJ, Pearcy M, Mcelwain DLS. Modelling external bone adaptation using evolutionary structural optimisation. Biomechan Model Mechanobiol. 2007;6:275-85.
García JM, Doblaré M, Cegonino J. Bone remodeling simulation: a tool for implant design. Comput Mater Sci. 2002;25:100-14.
Wolff J. The law of bone remodelling. Pro Business. Traducción de: Das Gesetz der Transformation der Knochen. Berlin: Springer;1892.
Cowin SC, Hegedus DH. Bone remodeling I: theory of adaptive elasticity. Journal of Elasticity. 1976;6:313-26.
Hart RT. Bone modeling and remodeling: theories and computation. En: Cowin SC. Bone mechanics handbook. 2da. ed. Boca Raton: CRC Press; 2001.31: 1-42.
Rouhi G, Epstein M, Sudak L, Herzog W. Free surface density and microdamage in bone remodeling equation: theorical considerations. International Journal of Engineering Science. 2006;44:456-69.
Moroz A, Crane MC, Smith G, Wimpenny DI. Phenomenological model of bone remodeling cycle containing osteocyte regulation loop. BioSystems. 2006;84:183- 90.
Komarova SV, Smith RJ, Dixon J, Sims SM, Walh LM. Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone. 2006;33(2):206-15.
Coelho PG, Fernandes PR, Rodrigues HC, Cardoso BJ, Guedes JM. Numerical modelling of boen tissue adaptation. A hierarchical approach for bone apparent density and trabecular structure. Journal of Biomechanics. 2009;42:830-37.
Hambli R, Katerchi H, Benhamu CL. Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech Model Mechanobiol, 2010. 10(1):133-145.
Huiskes R. If bone is the answer, then what is the question? J Anat 2000;197:145-56.
Doblaré M. Sobre el modelado en biomecánica y mecanobiología. Real Academia de ciencias exactas, físicas, químicas y naturales de Zaragoza, 2005. [en línea] http://www.unizar.es/acz/02AcademicosNumerarios/Discursos /Doblare.pdf [citado 19 de julio de 2010]
Zeman ME, García JM, Doblaré M. Simulación mediante el método de los elementos finitos del alendronato en un modelo de remodelado óseo basado en mecánica de daño. Acta Científica Venezolana. 2003;54(1):36-42.
Mullender MG, Huiskes R. A proposal for the regulatory mechanism of Wolff's law. Journal of Orthopaedic Research. 1995;13:503-12.
Huiskes R, Ruimerman R, Van Lenthe GH, Janssen JD. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature. 2000;405:704-06.
García-Aznar JM, Rueberg T, Doblaré M. A bone remodeling model coupling microdamage growth and repair by 3D BMU activity. Biomechan Model Mechanobiol. 2005;4:147-67.
Martínez-Reina J, García-Aznar JM, Domínguez J, Doblaré M. A bone remodelling model including the directional activity of BMUs. Biomech Model Mechanobiol. 2009;8:111-27.
Doblaré M, Garcia-Aznar JM. On the numerical modelling of growth, tissue differentiation and damage in structural living tissues. Arch Comput Meth Engng. 2006;13(4):471-513.
McNamara LM, Prendergast PJ. Bone remodelling algorithms incorporating both strain and microdamage stimuli. Journal of Biomechanics. 2007;40:1381-91.
Mulvihill BM, Prendergast PJ. Mechanobiological regulation of the remodelling cycle in trabecular bone and possible biomechanical pathways for osteoporosis. Clinical Biomechanics. 2010;25:491-98.
Carpenter RD, Carter DR. The mechanobiological effects of periostal surface loads. Biomechan Model Mechanobiol 2008;7:227-42.
Proff P, Römer P. The mollecular mechanism behind bone remodeling: a review. Clin Oral Invest. 2009;13:355-62.
Chen JH, Liu C, You L, Simmons CA. Bonin up on Wolff's Law: mechanical regulation of the cells that make and maintain bone. Journal of Biomechanics. 2010;43:108-18.
Tsubota K, Suzuki Y, Yamada T, Hojo M, Makinouchi A, Adachi T. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law. Journal of Biomechanics. 2009;42:1088-94.
Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech. 1987;20:11-12, 1135-50.
Cowin SC. Remarks on optimization and the prediction of bone adaptation to altered loading. [en línea] http://biopt.ippt.gov.pl/Minipapers/Cowin.pdf [Citado 3 de junio de 2010].
Fridez P, Rakotomanana L, Terrier A, Leyvraz PF. Three dimensional model of bone external adaptation. Computer methods in Biomechanics and Biomedical Engineering. 1998;2:189-96.
Martínez G, Cerrolaza M. A bone adaptation integrated approach using BEM. Engineering Analysis with Boundary. 2006;30:107-15.
Annicchiarico W, Martinez G, Cerrolaza M. Boundary elements and b-spline surface modeling for medical applications. Applied Mathematical Modelling. 2007;31:194-208.
Martínez G, García JM, Doblaré M, Cerrolaza M. External bone remodeling through Boundary elements and damage mechanics. Mathematics and Computers in Simulation. 2006;73:183-99.
Lanyon LE, Goodship AE, Pye CJ, Macfie JH. Mechanically adaptive bone remodeling. J Biomech. 1982;15(3):141-54.
BendsÆe MP. Optimal shape design as a material distribution problem. Structural Optimization 1989, 1:193-202.
BendsÆe MP, Sigmund O. Topology Optimization Theory, Methods and Applications. Berlin. Springer; 2003.
Garzón-Alvarado DA, Roa MA, Ramírez A. Predicción del proceso de remodelación ósea para diferentes implantes de cadera utilizando optimización topológica. Rev Cubana Ortop Traumatol. 2009;22:25-48.
Garzón-Alvarado DA, Duque C, Roa MA. Análisis de regeneramiento óseo bajo el esquema de optimización topológica. Revista Ingeniería e Investigación. 2005;25:22-29.
Garzón-Alvarado DA, Roa MA. Análisis por elementos finitos del proceso de regeneración ósea. Bogotá: Unibiblos; 2004.
Tovar A, Niebur GL, Sen M, Renaud JD. Bone structure adaptation as a cellular automaton optimization process. En: Memorias del 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, California, 2004.
Vera A, Tovar A. Estudio computacional de las microgrietas, la apoptosis y el envejecimiento en el remodelado óseo. Revista Ingeniería Biomédica. 2008;2:73- 83.
Penninger CL, Patel NM, Niebur GL, Tovar A, Renaud JE. A fully anisotropic hierarchical hybrid cellular automaton algorithm to simulate bone remodeling. Mechanics Research Communications. 2008;35:32-42.
Cowin SC. Structural adaptation of bones. Appl Mech Rev. 1990;43:127-33.
Cowin SC. On the minimization and maximization of the strain energy density in cortical bone tissue. Journal of Biomechanics. 1995;28:445-47.
Jang IG, Kim IY. Computational study of Wolff's law with trabecular architecture in the human proximal femur using topology optimization. Journal of Biomechanics. 2008;41:2353-61.
Jang IG, Kim IY. Computational simulation of trabecular adaptation progress in human proximal femur during growth. Journal of Biomechanics. 2009;42:573-80.
Jang IG, Kim IY. Application of design space optimization to bone remodeling simulation of trabecular architecture in human proximal femur for higher computational efficiency. Finite Elements in Analysis and Design. 2010;46:311-19
Xinghua Z, He G, Bingzhao G. The application of topology optimization on the quantitative description of the external shape of bone structure. Journal of Biomechanics. 2005;38:1612-20.
Jang IG, Kim IY. Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling. Journal of Biomechanics. 2010;43:294-301.
Sanz-Herrera JA, García-Aznar JM, Doblaré M. On scaffold designing for bone regeneration: A computational multiscale approach. Acta Biomaterialia. 2009;5(1):219-29.