2011, Number 1
<< Back Next >>
Rev Cubana Invest Bioméd 2011; 30 (1)
Implementation of reaction-diffusion systems in the design of the internal geometry of matrices for bone regeneration
Garzón ADA, Velasco PMA
Language: Spanish
References: 26
Page: 83-96
PDF size: 576.12 Kb.
ABSTRACT
One of the different areas of textile Engineering is the search of alternatives to
create a new bone tissue and the replacement of its function. To fulfill this
requirement different matrices have been developed allowing the cellular migration,
the growth of bone tissue, the transportation of growth factors and nutrients, as
well as the renewal of bone mechanical properties. Matrices are manufactured
through different techniques that in some cases, to obstruct the total control on the
size and orientation of characteristic pores. From this perspective, authors propose
a reaction-diffusion system to design the geometrical specifications of bone
matrices. To assess the hypothesis simulations are performed in two or three
dimensions of reaction-diffusion system together with the biomaterial to create the
matrix. Results obtained show the effectiveness of the methodology to control the
following features: porosity percentage, pore size, orientation and interconnection
of these bone matrices manufactured according the proposed hypothesis.
REFERENCES
Lanza R, Langer R, Vacanti J. Principles of Tissue Engineering. 3rd. ed. Academic Press; 2007.
Hollinger J, Einhorn TA, Doll B, Sfeir C. Bone Tissue Engineering. 1st. ed. USA: CRC Press; 2004.
Van Gaalen S, Kruyt M, Meijer G, Mistry A, Mikos A, Van den Beucken J, et al. Tissue engineering of bone. En: Tissue Engineering. Amsterdam: Elsevier Academic Press; 2008. p. 559-610.
Olivares AL, Marsal E, Planell JA, Damien Lacroix D. Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials. 2009. 30(30) 6142-49.
Sanz-Herrera JA, García-Aznar JM, Doblaré M. On scaffold designing for bone regeneration: A computational multiscale approach. Acta Biomaterialia. 2009;5(1): 219-29.
Rekow D, Van Thompson P, Ricci JL. Influence of scaffold meso-scale features on bone tissue response. Journal of Materials Science. 2006;41(16):5113-21.
Meyer U, Meyer T, Handschel J, Wiesmann HP. Fundamentals of Tissue Engineering and Regenerative Medicine 1st. ed. Heidelberg: Springer; 2009.
Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials.2000;21(24):2529-43..
Roussel CJ, Roussel MR. Reaction-diffusion models of development with statedependent chemical diffusion coefficients. Progress in Biophysics and Molecular Biology. 2004;86(1):113-60.
Volpert V, Petrovskii S. Reaction-diffusion waves in biology. Physics of Life Reviews. 2009;6(4):267-310.
McGraw T. Generalized reaction-diffusion textures. Computers & Graphics.2008;32(1):82-92.
Velasco M, Garzón D. Implantes Scaffolds para regeneración ósea. Materiales, técnicas y modelado mediante sistemas de reacción-difusión. Revista Cubana de Investigaciones Biomédicas 2009; 29(1). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002010000100008&lng=es&nrm=iso&tlng=es
Cowin S. Bone mechanics handbook. USA: CRC Press; 2001.
Ma PX, Elisseeff J. Scaffolding in Tissue Engineering. 1st. ed. USA: CRC Press; Taylor and Francis Group, 2006.
Madzvamuse A. A numerical approach to the study of spatial pattern formation[Tesis Doctoral]. Oxford: Oxford University; 2000.
P.K. Maini and H.G. Othmer (eds) Mathematical Models for Biological Pattern Formation, in IMA Volumes in Mathematics and its Applications, 121. New York. Springer 2000.
Murray JD. Mathematical Biology I. 1st. ed. USA: Springer; 2001.
Zienkiewicz OC, Taylor RL. The finite element method. The Basis. Vol. I. Oxford: Butterworth-Heinemann; 2000.
Zienkiewicz OC, Taylor RL. The finite element method. Solid Mechanics. Vol. II. Oxford: Butterworth-Heinemann; 2000.
Javierre E, Moreo P, Doblaré M, García-Aznar JM. Numerical modelling of amechano-chemical theory for wound contraction analysis. International Journal of Solids and Structures. 2009;46(20):3597-3606.
Hughes TJR. The Finite Element Method (linear Static And Dynamic Finite Element Analysis). USA: Dover; 2000.
Page KM, Maini PK, Monk NAM. Complex pattern formation in reaction-diffusion systems with spatially varying parameters. Physica D: Nonlinear Phenomena. 2005;202(1-2):95-115.
Kasios. Duowedge. Catálogo del fabricante. Kasios 2008; Rev. 700 2da. ed. 2008. Disponible en: http://www.kasios.com
Callahan TK, Knobloch E, Pattern formation in three-dimensional reactiondiffusion systems. Physica D. 1999;132:339-62.
Leppänen T, Karttunen M, Kaski K, Barrio R, Zhang L. A new dimension to Turing patterns. Physica D. 2002;168-169:35-44.
Shoji H, Yamada K, Ueyama D, Ohta T. Turing patterns in three dimensions. Physical review. 2007; E 75.