2009, Number 4
<< Back Next >>
Gac Med Mex 2009; 145 (4)
Patogénesis de la distrofia miotónica tipo 1
Magaña JJ, Leyva-García N, Cisneros B
Language: Spanish
References: 73
Page: 331-337
PDF size: 204.98 Kb.
ABSTRACT
Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults, affecting 1/8000 individuals. DM1 is a dominant disorder characterized by multisystemic clinical features affecting skeletal muscle, heart and the nervous and endocrine systems. DM1 is caused by an expansion of CTG trinucleotide repeats within the 3’-untranslated region (3’-UTR) of the DMPK gene. This repeat is polymorphic in normal individuals with alleles ranging from 5 to 37 in length. Repeats exceeding a threshold of approximately 50 and reaching up to a number of 4,000 result in disease. This review offers a detailed description of the scientific findings that have allowed the establishment of the molecular basis of the DM1 in the muscle and nervous systems. Currently, it is known that mutant DM1 transcript accumulates in the nucleus of muscle and neuronal cells sequestering nuclear proteins, such as splicing regulators and transcription factors to form nuclear foci that are observed under inmunofluorescence techniques. This event disturbs the expression of several muscular and neuronal genes impairing cell differentiation, which may explain the multiple symptoms of the disease. Finally, the main findings towards the development of a gene therapy for DM1 are discussed.
REFERENCES
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science 2001;291:1304-1351.
Ellegren H. Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet 2000;24:400-402.
Fan H, Chu JY. A Brief Review of Short Tandem Repeat Mutation. Geno Prot Bioinfo 2007;5:7-14.
4 Shao J, Diamond MI. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 2007;16:115-123.
Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 2005;6:743-755.
Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci 2007;30:575-621.
Magaña JJ, Vergara MD, Sierra-Martínez M, García-Jiménez E, Rodríguez- Antonio F, Gómez MR, et al. Molecular analysis of the CAG repeat among patients with Type-2 spinocerebellar ataxia in the Mexican population. Gac Med Mex 2008;144:413-418.
Harper PS, van Engelen BG, Eymard B, Rogers M, Wilcox D. 99th ENMC International Workshop: myotonic dystrophy: present management, future therapy. 9-11 November 2001, Naarden, The Netherlands. Neuromuscul Disord 2002;12:596-599.
D’Angelo MG, Bresolin N. Cognitive impairment in neuromuscular disorders. Muscle Nerve 2006;34:16-33.
Bird TD. Myotonic dystrophy type I. Gene clinics: clinical genetic information resource [data base on line]. University of Washington, Seattle. Disponible en www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=myotonic-d
Day JW, Ricker K, Jacobsen JF, Rasmussen LJ, Dick KA, Kress W, et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 2003;60:657-664.
Cho DH, Tapscott SJ. Myotonic dystrophy: emerging mechanisms for DM1 and DM2. Biochimica Biophysica Acta 2007;1772:195-204.
Tian B, White RJ, Xia T, Welle S, Turner DH, Mathews MB, et al. Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNAdependent protein kinase PKR. RNA 2000;6:79-87.
Harper PS, Monckton, D.G. Myotonic dystrophy. En: Engel AG, Franzini- Armstrong C, editors. 3rd edition. New York: McGraw Hill Professional; 2004, pp. 1039-1076.
Kaliman P, Llagostera E. Myotonic dystrophy protein kinase (DMPK) and its role in the pathogenesis of myotonic dystrophy 1. Cell Signal 2008;20:1935-1941.
Fu YH, Pizzuti A, Fenwick RG Jr, King J, Rajnarayan S, Dunne PW, et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 1992;255:1256-1258.
Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene. Science 1992;255:1253-1255.
Barcelo JM, Mahadevan MS, Tsilfidis C, MacKenzie AE, Korneluk RG. Intergenerational stability of the myotonic dystrophy protomutation. Hum Mol Genet 1993;2:705-709.
Day JW, Ranum LP. RNA pathogenesis of the myotonic dystrophies. Neuromuscul Disord 2005;15:15-16.
Kurihara T. New classification and treatment for myotonic disorders. Intern Med 2005;44:1027-1032.
Sarkar PS, Chang HC, Boudi FB, Reddy S. CTG repeats show bimodal amplification in E. coli. Cell 1998;95:531-540.
Carrasco M, Canicio J, Palacín M, Zorzano A, Kaliman P. Identification of intracelular signaling pathways that induce myotonic dystrophy protein kinase expression during myogenesis. Endocrinology 2002;143:3017-3025.
Schara U, Schoser BG. Myotonic dystrophies type 1 and 2: a summary on current aspects. Semin Pediatr Neurol 2006;13:71-79.
Fu YH, Friedman DL, Richards S, Pearlman JA, Gibbs RA, Pizzuti A, et al. Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science 1993;36:59-61.
Machuca-Tzili L, Brook D, Hilton-Jones D. Clinical and molecular aspects of the myotonic dystrophies: A review. Muscle Nerve 2005;32:1-18.
Ranum LP, Day JW. Myotonic dystrophy: RNA pathogenesis comes into focus. Am J Hum Genet 2004;74:793-804.
Wang YH, Amirhaeri S, Kang S, Wells RD, Griffith JD. Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 1994;265:669-671.
Klesert TR, Cho DH, Clarck JI, Maylie J, Adelman J, Snider L, et al. Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy. Nat Genet 2000;25:105-109.
Sarkar PS, Appukuttan B, Han J, Ito Y, Ai C, Tsai W, et al. Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts. Nat Genet 2000;25:110-114.
Alwazzan M, Newman E, Hamshere MG, Brook JD. Myotonic dystrophy is associated with a reduced level of RNA from DMWD allele adjacent to the expanded repeat. Hum Mol Genet 1999;8:1491-1497.
Junghans RP, Ebralidze A, Tiwari B. Does (CUG)n repeat in DMPK mRNA paint chromosome 19 to suppress distant genes to create the diverse phenotype of myotonic dystrophy?: a new hypothesis of long-range cis autosomal inactivation. Neurogenetics 2001;3:59-67.
Taneja KL, McCurrach M, Schalling M, Housman D, Singer RH. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol 1995;128:995-1002.
Davis BM, McCurrach M, Taneja KL, Singer RH, Housman DE. Expansion of CUG trinucleotide repeat in the 3’ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci USA 1997;94:7388-7393.
Amack JD, Paguio AP, Mahadevan MS. Cis and trans effects of the myotonic dystrophy (DM) mutation in a cell culture model. Hum Mol Genet 1999;8:1975-1984.
Ebralidze A, Wang Y, Petkova V, Ebralidze K, Junghans RP. RNA leaching of transcription factors disrupts transcription in myotonic dystrophy. Science 2004;303:383-387.
Ranum LP, Cooper TA. RNA-mediated neuromuscular disorders. Annu Rev Neurosci 2006;29:259-277.
De León MB, Cisneros B. Myotonic dystrophy 1 in the nervous system: From the clinic to molecular mechanisms. J Neurosci Res 2008;86:18-26.
Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 2004;13:3079-3088.
Mankodi A, Urbinati CR, Yuan Q-P, Moxley RT, Sansone V, Krym M, et al. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 2001;10:2165-2170.
Fardaei M, Rogers MT, Thorpe HM, Larkin K, Hamshere MG, Harper PS, et al. Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet 2002;11:805-814.
Kuyumcu-Martínez NM, Cooper TA. Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. Prog Mol Subcell Biol 2006;44:133-159.
Philips AV, Timichenko LT, Cooper TA. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 1998;280:737-741.
Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 2001;29:40-47.
Buj-Bello A, Furling D, Tronchere H, Laporte J, Lerouge T, Butler-Browne GS, et al. Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells. Hum Mol Genet 2002;11:2297-2307.
Ho TH, Bundman D, Armstrong DL, Cooper TA. Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet 2005;14:1539-1547.
Kimura T, Nakamori M, Lueck JD, Pouliquin, Aoike F, Fujimura H, Dirksen RT, et al. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase in myotonic dystrophy type 1. Hum Mol Genet 2005;14:2189-2200.
Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, et al. Expanded CUG repeats trigger aberrant splicing of CIC-1 chloride channel premRNA and Hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 2002;10:35-44.
Charlet BN, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 2002;10:45-53.
Sergeant N, Sablonniere B, Schraen-Maschke S, Ghestem A, Maurage CA, Wattez A, et al. Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet 2001;10:2143-2155.
Leroy O, Dhaenens CM, Schraen-Mashke S, Belarbi K, Delacourte A, Andreadis A, et al. ETR-3 represses tau exons 2/3 inclusion, a splicing event abnormally enhanced in myotonic dystrophy type 1. J Neurosci Res 2006;84:852-859.
Timichenko NA, Cai ZJ, Welm AL, Reddy S, Ashizawa T, Timichenko LT. RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1. J Biol Chem 2001;276:7820-7826.
Savkur RS, Philips AV, Cooper TA, Dalton JC, Moseley ML, Ranum LP, et al. Insulin receptor splicing alteration in myotonic dystrophy 2. Am J Hum Genet 2004;74:1309-1313.
Copley LM, Zhao WD, Kopacz K, Herman GE, Kioschis P, Poustka A. et al. Exclusion of mutations in the MTMR1 gene as a frequent cause of X-linked myotubular myopathy. Am J Med Genet 2002;107:256-258.
Artero R, Prokop A, Paricio N, Begemann G, Pueyo I, Mlodzik M, et al. The muscleblind gene participate in the organization of Z-bands and epidermal attachments of Drosophila muscles and is regulated by Dmef2. Dev Biol 1998;195:131-143.
Begemann G, Paricio N, Artero R, Kiss I, Pérez-Alonso M, Mlodzik M. Muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins. Development 1997;124:4321-4331.
Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D, et al. A muscleblind knockout model for myotonic dystrophy. Science 2003;302:1978-1980.
Hernández-Hernández O, Bermúdez-de-León M, Gómez P, Velázquez-Bernardino P, García-Sierra F, Cisneros B. Myotonic dystrophy expanded CUG repeats disturb the expression and phosphorylation of tau in PC12 cells. J Neurosci Res 2006;84:841-851.
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 2000;33:95-130.
Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO 1989;8:393-399.
Wang Y, Wang J, Gao L, Lafyatis R, Stamm S, Andreadis A. Tau exons 2 and 10, which are misregulated in neurodegenerative diseases, are partly regulated by silencers which bind a SRp30c.SRp55 complex that either recruits or antagonizes htra2beta1. J Biol Chem 2005;280:14230-14239.
Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 1996;87:13271338.
Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004;re16.
Winblad S, Lindberg C, Hansen S. Cognitive deficits and CTG repeat expansion size in classical myotonic dystrophy type 1 (DM1). Behav Brain Funct 2006;2:16.
Quintero-Mora ML, Depardon F, Waring J, Korneluk RG, Cisneros B. Expanded CTG repeats inhibit neuronal differentiation of the PC12 cell line. Biochem Biophys Res Commun 2002;295:289-294.
Andrade A, de-León MB, Hernández-Hernández O, Cisneros B, Félix R. Myotonic dystrophy CTG repeat expansion alters Ca2+ channel functional expression in PC12 cells. FEBS Lett 2007;581:4430-4438.
Drubin DG, Feinstein SC, Shooter EM, Kirschner MW. Nerve growth factorinduced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J Cell Biol 1985;101:1799-1807.
Black MM, Aletta JM, Greene LA. Regulation of microtubule composition and stability during nerve growth factor-promoted neurite outgrowth. J Cell Biol 1986;103:545-557.
Brugg B, Matus A. PC12 cells express juvenile microtubule-associated proteins during nerve growth factor-induced neurite outgrowth. J Cell Biol 1988;107:643-650.
Langlois MA, Lee NS, Rossi JJ, Puymirat J. Hammerhead ribozymemediated destruction of nuclear foci in myotonic dystrophy myoblasts.Mol Ther 2003;7:670-680.
Harmon EH, Larsen TD, Paulson AF, Perryman MB. Myotonic dystrophy protein kinase is expressed in embryonic myocytes and is required for myotube formation. Dev Dyn 2008;237:2353-2366.
Hashem VI, Pytlos MJ, Klysik EA, Tsuji K, Khajavi M, Ashizawa T, et al. Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res 2004;32:6334-6346.
Chen HY, Kathirvel P, Yee WC, Lai PS. Correction of dystrophia myotonica type 1 pre-mRNA transcripts by artificial trans-splicing. Gene Ther 2009;16:211-217.
Kim DH, Langlois MA, Lee KB, Riggs AD, Puymirat J, Rossi JJ. HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence. Nucleic Acid Res 2005;33:3866-3874.