2011, Number 2
<< Back Next >>
Rev Cuba Endoc 2011; 22 (2)
Effect of Vimang® supplementation on oxidative stress markers in young patients with type 1 diabetes mellitus
Escobar AAL, Pérez OY, Vera GM, Peñaranda GO, Álvarez LA
Language: Spanish
References: 42
Page: 103-117
PDF size: 157.73 Kb.
ABSTRACT
Introduction: the oxidative stress plays a fundamental role in the pathogenesis of diabetes mellitus complications. Vimang® (a natural antioxidant product) has been successfully used diseases characterized by an increase of oxidative stress.
Objective: to assess the effect of Vimang® on the redox state in young people presenting with type 1 diabetes mellitus.
Methods: a phase II clinical, randomized, controlled unicenter trial to assess the antioxidant effectiveness tablets Vimang® in young people with type 1 diabetes mellitus including 50 patients located into two groups (25 each) who received 300 mg tablets Vimang® every eight hours and placebo, respectively was carried out. The glycemia control was assessed by glycosylated hemoglobin, a complete lipidic profile and hemochemical determinations were carried out. The variables of damage due to oxidative stress were assessed: peroxidation potential, total hydroperoxides, advanced products of the protein oxidation, malonylaldehyde and the reduced glutathione endogenous antioxidant. Determinations were made before and at 3 months of intervention. Groups were compared each other, in the two times as well as in an internally regarding the basal state previous to supplementation with Vimang® or placebo.
Results: the peroxidation potential increased at three months in both groups (p < 0,05), only decreased in the 25 % of the patients under supplementation. There was an increase of malonylaldehyde (p < 0,05), of total hydroperoxides (p < 0,01) and a also a decrease of reduced glutathione (p = 0,01) at three months in patients under treatment. It was neither related to supplementation nor to metabolic control, which improved in both groups.
Conclusions: Vimang® was not an effective antioxidant in the dose used in type 1
diabetes mellitus patients.
REFERENCES
Eisenbarth G, Polonsky K, Buse J. Type 1 Diabetes Mellitus. In: Kronemberg H, Melmed S, Polonsky K, Reed Larsen P. Williams Textbook of Endocrinology. 11th ed. Philadelphia: Saunders An Imprint of Elsevier; 2008. p. 1599-621.
Sosenko JM, Palmer JP, Greenbaum CJ, Sosenko J, Greenbaum CJ, Mahon J, et al. For the DPT-1 Study Group. Patterns of metabolic progression to type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care. 2006;29:643-9.
American Diabetes Association. Standards of Medical Care in Diabetes-2008. Diabetes Care. 2008;31: Suppl 1:S13-54.
The Diabetes Control and Complications Trial Research Group: Effects of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the Diabetes Control and Complications Trial: a randomized, controlled trial. Ann Intern Med. 1998;128:517-23.
Palmer JP, Fleming GA, Greenbaum CJ, Herold KC, Jansa LD, Kolb H, et al. Cpeptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve β-cell function. Diabetes. 2004;53:250-64.
Martínez Sánchez G, Delgado Hernández RG, Garrido Garrido G. Mitos y realidades de la terapia antioxidante. Vimang nuevo producto natural antioxidante. La Habana: Edición Especial del Centro de Química Farmacéutica; 2003. p. 67.
Brownlee M, Aiello M, Cooper ME, Vinik AI, Nesto R, Boulton AJM. Complications of Diabetes Mellitus. In: Kronemberg H, Melmed S, Polonsky K, Reed Larsen P. Williams Textbook of Endocrinology. 11th ed. Philadelphia: Saunders An Imprint of Elsevier; 2008. p. 1431-518.
Nishikawa Araki E. Impact of Mitochondrial ROS Production in the Pathogenesis of Diabetes Mellitus and Its Complications. Antiox & Red Sign. 2007;9(3):343-53.
Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab. 2006;290:E1-E8.
Obrosova I. Increased Sorbitol Pathway Activity. Antiox & Red Sign. 2005;7(11 & 12):1543-52.
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813-20.
Huebschmann J, Regensteiner J. Diabetes and Advanced Glycoxidation End Products. Diabetes Care. 2006;29(6):1420-32.
Inoguchi T, Ping L, Umeda F. High Glucose Level and Free Fatty Acid Stimulate Reactive Oxygen Species Production Through Protein Kinase C-Dependent Activation of NAD(P)H Oxidase in Cultured Vascular Cells. Diabetes. 2000;49:1939-45.
Brownlee M. Banting Lecture 2004. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615-25.
El-Osta A, Brasacchio D, Yao D, Brownlee M. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205: 2409-17.
De Rubertis FR, Craven PA, Melhem MF, Salah EM. Attenuation of renal injury in db/db mice over expressing superoxide dismutase: evidence for reduced superoxidenitric oxide interaction. Diabetes. 2004;53:762-8.
Casteilla L, Blondel O, Klaus S. Stable expression of functional mitochondrial uncoupling protein in Chinese hamster ovary cells. Proc Natl Acad Sci USA. 1990;87:5124-512.
Marra G, Cotroneo P, Pitocco, Manto A, Di Leo M, Rutuolo V, et al. Early Increase of Oxidative Stress and Reduced Antioxidant Defenses in Patients With Uncomplicated type 1 diabetes. Diabetes Care. 2002;25:370-5.
Schultz Johansen J, Harris AK, Rychly D, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovascular Diabetology. 2005;4:5.
Núñez-Sellés A, Delgado-Hernández R, Garrido-Garrido G. The paradox of natural products as pharmaceuticals. Experimental evidences of a mango stem bark extract. Pharmacological Research. 2007;55:351-8.
Gil L. Estrés oxidativo en pacientes con VIH-SIDA cubanos: intervención dietética y terapia antioxidante [tesis para optar por el grado de Doctora en Ciencias Farmacéuticas]. Instituto de Medicina Tropical "Pedro Kourí". La Habana; 2003.
Pardo-Andreu GL, Philipp S, Riaño A, Sánchez C, Viada C, Núñez-Sellés AJ, et al. Mangifera indica L. (Vimang) protection against serum oxidative stress in elderly humans. Arch Med Res. 2006;37:158-64.
World Health Organization. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Report of a WHO Consultation. Part 1: Diagnosis and Classification of Diabetes Mellitus. Geneva: WHO Department of Noncommunicable Disease Surveillance. 1999:1-59 [citado 10 de febrero de 2008]. Disponible en: http://www.who.int
Martín-Gallán P, Carrascosa A, Gussinyé M, Domínguez C. Oxidative stress in childhood type 1 diabetes: results from a study covering the first 20 years of evolution. Free Radical Research. 2007;41(8):919-28.
Singh I, Shishehbor M, Ansell B. High-Density Lipoprotein as a Therapeutic Target. A Systematic Review. JAMA. 2007;298(7):786-98.
Birjmohun RS, Hutten JJP, Kastelein Stroes ESG. Increasing HDL cholesterol with extended-release nicotinic acid: from promise to practice. Review article. The Netherlands Journal of Medicine. 2004;62(7-8):229-34.
Gil L. Efectos del VIMANG sobre algunos marcadores de progresión de la infección por VIH-1 en pacientes cubanos. Rev Cub Med Trop. 2003;55(2):115-8.
Martínez G, Delgado R, Pérez G, Garrido G, Núñez-Sellés AJ, León OS. Evaluation of the in vitro antioxidant activity of Mangifera indica L. extracts (QF-808). Phytother Res. 2000;14:424-7.
Garrido G, González D, Lemus Y, Garcia D, Lodeiro L, Quintero G, et al. In vivo and in vitro anti-inflammatory activity of Mangifera indica L. extract (VIMANG®). Pharmacol Res. 2004;50:143-9.
Pardo-Andreu GL, Sánchez-Baldoquín C, Avila-González R, Suzuki Yamamoto ET, Revilla A, Uyemura SA, et al. Interaction of Vimang (Mangifera indica L. extract) with Fe(III) improves its antioxidant and cytoprotecting activity. Pharmacol Res. 2006;54:389-95.
Pardo-Andreu, Castilho B, Velho J, Delgado R. Mangifera indica L. extract (Vimang®) and its main polyphenol mangiferin prevent mitochondrial oxidative stress in atherosclerosis-prone hypercholesterolemic mouse. Pharmacological Research. 2008;57:332-8.
Jain S, McVie R. Vitamin E Supplementation Restores Glutathione and Malondialdehyde to Normal Concentrations in Erythrocytes of Type 1 Diabetic Children. Diabetes Care. 2000;23:1389-94.
Nweke I, Ohaeri OC. Effect of Vitamin on Malondialdehyde and Glutathione Levels in Type 2 Diabetic Nigerians. The Intern Journal of Nut and Well [serie en internet]. 2009 [citado 10 de Julio de 2009];7(2). Disponible en: http://www.ispub.com/journal/the_internet_journal_of_nutrition_and_wellness/volume_7_number_2_18/article/effect_of_vitamin_on_malondialdehyde_and_glutathione_levels_in_type_2_diabetic_nigerians.html
Davì G, Ciabattoni G, Consoli A, Mezzetti A, Falco A, Santarone S, et al. In vivo formation of 8-iso-PGF2 and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation. 1999;99:224-9.
Ceriello A, Kumar V, Piconi, Exposito K, Giugliano D. Simultaneous Control of Hyperglycemia and Oxidative Stress Normalizes Endothelial Function in Type 1 Diabetes. Diabetes Care. 2007;30:649-54.
Miller ER, Pastor-Barriuso P, Dalal D, Riemersma A, Appel LJ, Guallar E. Metaanalysis: high-dosage Vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:137-46.
Bjelakovic G, Nikolova D. Mortality in Randomized Trials of Antioxidant Supplements for Primary and Secondary Prevention Systematic Review and Metaanalysis. JAMA. 2007;297:842-57.
Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Cappuccio FP, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes. A randomized trial. Ann Intern Med. 2007;147:217-23.
Nuñez-Selles AJ, Delgado-Hernández R, Garrido-Garrido G, García-Rivera D, Guevara García M, Pardo-Andreu GL. The paradox of natural products as pharmaceuticals. Pre-clinical and clinical evidences of a mango stem bark extract. Pharmacol Res. 2007;55:351-8.
Wiernsperger NF. Oxidative stress: the special case of diabetes. BioFactors. 2003;19:11-8.
Darcy-MacLellan J, Gerrits M. Physiological Increases in Uncoupling Protein 3 Augment Fatty Acid Oxidation and Decrease Reactive Oxygen Species Production Without Uncoupling Respiration in Muscle Cells. Diabetes. 2005;54:2343-50.
Ye G, Zheng S, Metreveli NS, Donthi RV, Xia Y, Ming Xu, Carlson E, et al. Catalase protect cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes. 2004;53:1336-43.