2012, Number 1
<< Back Next >>
salud publica mex 2012; 54 (1)
Noticias de salud ambiental ehp-spm
Language: Spanish
References: 85
Page: 78-96
PDF size: 443.11 Kb.
Text Extraction
No abstract
REFERENCES
Recomendación formal del Consejo Nacional de Estándares Orgánicos al Programa Nacional de (NOSB) al Programa Nacional de Orgánicos (NOP), 28 de octubre de 2010. Disponible en: http://tinyurl.com/47oeor4 [consultado el 14 de febrero de 2011].
Base de datos de conceptos de la ISO. Nanotecnologías-Terminología y Definiciones de los Nano-objetos-Nanopartícula, Nanofibra y Nanoplaca. Nanoescala [página web. Ginebra, Suiza: Organización Internacional de Estandarización. Disponible en: http://tinyurl.com/6252dft [consultado el 14 de febrero de 2011].
Hansen SF, et al. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1(3):243–250 (2007); doi:10.1080/17435390701727509.
NanoTecNexus.org [página web]. San Diego, CA: NanoTecNexus. Disponible en: http://tinyurl.com/ydm7mxo [consultado el 14 de febrero de 2011].
Trickler WJ. Silver nanoparticle induced blood–brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 118(1):160–170 (2010); doi:10.1093/toxsci/kfq244.
Takeda K, et al. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci 55(1):95-102 (2009); doi:10.1248/jhs.55.95.
The Future of Nanotechnology. A Rice Q&A with the NSF’s Mike Roco [página web]. Houston, TX: News and Media Relations, Universidad Rice (4 de abril de 2007). Disponible en: http://tinyurl.com/49vm5na [consultado el 14 de febrero de 2011].
Una norma de nuevo uso significativo exige que los fabricantes, importadores y procesadores de ciertas sustancias que notifiquen a la EPA al menos 90 días antes de iniciar cualquier actividad calificada por la Agencia como un nuevo uso significativo de una sustancia química existente, en este caso el uso de una forma nanoscópica del carbono.
Bergeson LL. EPA Issues Final SNURs for Carbon Nanotubes [entrada de blog]. Nanotechnology Law Blog (17 de septiembre de 2010). Disponible en: http://tinyurl.com/4vsn54p [consultado el 14 de febrero de 2011].
GAO. Food Safety: FDA Should Strengthen Its Oversight of Food Ingredients Determined to Be Generally Recognized as Safe (GRAS). Washington, DC:Government Accountability Office (2010). Disponible en: http://tinyurl.com/5r62bu7 [consultado el 12 de febrero de 2011].
Analysis of Consumer Products Inventory [página web]. Washington, DC: Proyecto de Nanotecnologías Emergentes, Centro Internacional para Académicos Woodrow Wilson. Disponible en: http://tinyurl.com/yk46ye2 [consultado el 14 de febrero de 2011].
DS Laboratories, Inc. Spectral.DNC-L: Topical Treatment for Advanced Stages of Baldness [página web]. Disponible en: http://tinyurl.com/486ror8 [consultado el 14 de febrero de 2011].
Online Forum: Nanotechnology in Toothpaste? [página web]. Boston, MA: Museo de Ciencias (2011). Disponible en: http://tinyurl.com/4t9xsfj [consultado el 14 de febrero de 2011].
Chantecaille ‘Nano Gold’ Energizing Eye Cream [página web]. Seattle, WA: Nordstrom. Disponible en: http://tinyurl.com/4rc6o3s [consultado el 14 de febrero de 2011].
Fluid Foundation: Extreme Wear Flawless Makeup FPS 25 SPF [página web]. París, Francia: Dior. Disponible en: http://tinyurl.com/4wdew63 [consultado el 14 de febrero de 2011].
Gulson B, et al. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci 118(1):140-149 (2010); doi:10.1093/toxsci/kfq243.
EWG. EWG’s 2010 Sunscreen Guide. Sunscreens Exposed: 9 Surprising Truths [página web]. Washington, DC:Environmental Working Group (2009). Disponible en: http://tinyurl.com/25hyow7 [consultado el 14 de febrero de 2011].
Wang J, et al. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73(7):1121–1128 (2008); PMID:18768203.
Aruoja V, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468 (2009); doi:10.1016/j.scitotenv.2008.10.053.
Zhu X, et al. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209-215 (2010);doi:10.1016/j.chemosphere.2009.11.013.
Heinlaan M, et al. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316 (2008); doi:10.1016/j. chemosphere.2007.11.047.
Nations S, et al. Effects of ZnO nanomaterials on Xenopus laevis growth and development. Ecotoxicol Environ Saf 74(2):203-210 (2011); doi:10.1016/j.ecoenv.2010.07.018.
Zhu X, et al. Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79(9):928-933 (2010); doi:10.1016/j. chemosphere.2010.03.022.
Chemical Information Call-In: Nano Metals, Nano Metal Oxides, and Quantum Dots [página web]. Sacramento: Departamento de Control de Sustancias Tóxicas de California (2007). Disponible en: http://tinyurl.com/2daxjbw [consultado el 14 de febrero de 2011].
Trouiller B, et al. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69(22):8784–8789 (2009); doi:10.1158/0008 5472.CAN-09-2496.
Shimizu M, et al. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol 6:20 (2009); doi:10.1186/1743-8977-6-20.
Lai JC, et al. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int J Nanomedicine 3(4):533–545 (2008); PMID:19337421.
Gurr JR, et al. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1–2):66–73 (2005); doi:10.1016/j. tox.2005.05.007.
Kim IS, et al. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol 10(5):3453–3458 (2010); PMID:20358977.
Kuzma J, verHage P. Nanotechnology in Agriculture and Food Production: Anticipated Applications. Washington, DC: Proyecto de Nanotecnologías Emergentes, Centro Internacional para Académicos Woodrow Wilson (2006). Disponible en: http://tinyurl.com/4kf297v [consultado el 14 de febrero de 2011].
Miller G, Senjen R. Out of the Laboratory and on to Our Plates: Nanotechnology in Food & Agriculture. Washington, DC: Amigos de la Tierra (2008). Disponible en: http://tinyurl.com/38y23u [consultado el 14 de febrero de 2011].
House of Lords. Science and Technology Committee-First Report. Nanotechnologies and Food. London:British House of Lords (2009). Disponible en: http://tinyurl.com/4rk3ngr [consultado el 14 de febrero de 2011].
Nanotechnology: How It Works and Why It’s Safe [página web]. Fort Lauderdale, FL: The Source Vitamin Company, Inc. (2009). Disponible en: http://tinyurl.com/4nnq7qb [consultado el 14 de febrero de 2011].
Schmidt K. NanoFrontiers: Visions for the Future of Nanotechnology. Washington, DC: Proyecto de Nanotecnologías Emergentes, Centro Internacional para Académicos Woodrow Wilson (2007). Disponible en: http://tinyurl.com/6c7hror [consultado el 14 de febrero de 2011].
Maynard AD, et al. Measuring particle sizedependent physicochemical structure in airborne single walled carbon nanotube agglomerates. J Nanoparticle Res 9(1):85-92 (2007); doi:10.1007/s11051-006-9178-2.
Choi J-Y, et al. The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 43(9):3030–3034 (2009); doi:10.1021/es802388s.
NNI. Supplement to the President’s FY 2011 Budget. Washington, DC: The Iniciativa Nacional de Nanotecnología, Oficina de Políticas de Ciencias y Tecnología, Oficina Ejecutiva del Presidente (febrero de 2010). Disponible en: http://tinyurl.com/4aog2wx [consultado el 14 de febrero de 2011].
Muller J, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231 (2005); doi:10.1016/j. taap.2005.01.008.
Lam CW, et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134 (2004); doi:10.1093/toxsci/kfg243.
Shvedova A, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708 (2005); doi:10.1152/ajplung.00084.2005.
Sanchez V, et al. Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(5):511–529 (2009); doi:10.1002/wnan.41.
Kim B, et al. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44(19):7509–7514 (2010); doi:10.1021/es101565j.
Ahamed M, et al. Silver nanoparticle applications and human health. Clin Chim Acta 411(23-24):1841–1848 (2010); doi:10.1016/j.cca.2010.08.016.
Sharma HS, et al. Influence of engineered nanoparticles from metals on the blood–brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol 9(8):5055–5072 (2009); PMID:19928185.
Sharma HS, et al. Influence of nanoparticles on blood–brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl 106:359–364 (2010); PMID:19812977.
Griffitt RJ, et al. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978 (2008); doi:10.1897/08-002.1.
EPA. EPA Awards $5.5 Million to Support Nanotechnology Research: Research to Help Determine Whether Health Risks Exist [press release]. 17 Feb 2011. Washington, DC: Agencia de Protección al Ambiente de Estados Unidos. Disponible en: http://tinyurl.com/4sn4k72 [consultado el 17 de febrero de 2011].
NAS. Interacción del microbioma, los estresantes ambientales y la salud humana [taller], 27 y 28 de abril de 2011, Washington, DC. Washington, DC: Academia Nacional de Ciencias (2011). Disonible en: http://tinyurl.com/4xotab3 [consultado el 19 de julio de 2011].
Dominguez-Bello MG, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107(26):11971–11975 (2010); http://dx.doi.org/10.1073/pnas.1002601107.
Claesson MJ, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108 (suplemento 1):4586-4591 (2010); http://dx.doi.org/10.1073/pnas.1000097107.
Dethlefsen L, et al. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biology 6(11):e280 (2008); http://dx.doi.org/10.1371/journal.pbio.0060280.
Castagnini C, et al. Reduction of colonic inflammation in HLA-B27 transgenic rats by feeding Marie Ménard apples, rich in polyphenols. Br J Nur 102(11):1620-1628 (2009); http://dx.doi.org/10.1017/S0007114509990936.
Marchesi JR, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6(2):546–551 (2007); http://dx.doi.org/10.1021/pr060470d.
Turnbaugh PJ, et al. A core gut microbiome in obese and lean twins. Nature 457(7228):480–484 (2008); http://dx.doi.org/10.1038/nature07540.
El Proyecto del Microbioma Humano es un programa del Instituto Nacional de Salud (NIH) que tiene como fin caracterizar a las comunidades microbianas en diferentes zonas del cuerpo humano (nariz, tracto gastrointestinal, piel y tracto urogenital) e investigar qué papel desempeñan en la salud y en la enfermedad.
Claus SP, et al. Colonization-induced hostgut microbial metabolic interaction. mBio 2(2):e00271-10 (2011); http://dx.doi.org/10.1128/mBio.00271-10.
El consorcio de Metagenómica del Tracto Intestinal Humano de la Comisión Europea investiga las asociaciones entre la microbiota intestinal humana y la salud y las enfermedades humanas.
Arumugam M, et al. Enterotypes of the human gut microbiome. Nature 473(7346):174– 180 (2011); http://dx.doi.org/10.1038/ nature09944.
Stevens JF, Page JE. Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65(10):1317-1330 (2004); http://dx.doi.org/10.1016/j.phytochem.2004.04.025.
Possemiers S, et al. The prenylflavonoid ioxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine. J Nutr 136(7):1862–1867 (2006).
Van de Wiele T, et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect 113(1):6-10; http://dx.doi.org/10.1289/ehp.7259.
Kellogg CA, Griffin DW. Aerobiology and the global transport of desert dust. Trends Ecol Evol 21(11):638-644 (2006); http://dx.doi.org/10.1016/j.tree.2006.07.004.
Griffin DW. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20(3):459-477 (2007); http://dx.doi.org/10.1128/CMR.00039-06.
Kumarasamy KK, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10(9):597–602 (2010); http://dx.doi.org/10.1016/S1473-3099(10)70143-2.
Van de Wiele T, et al. Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environ Health Perspect 118(7):1004-1009 (2010); http://dx.doi.org/10.1289/ehp.0901794.
Liebert CA, et al. Phylogeny of mercury resistance (mer) operons of Gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol 63(3):1066-1076 (1997); PMID:9055422.
UNEP. Mercury Use in Artisanal and Small Scale Gold Mining. Nairobi, Kenya:United Nations Environment Programme (2008). Disponible en: http://tinyurl.com/3exdsvx [consultado el 19 de julio de 2011].
Richardson M. Mercury exposure and risks from dental amalgam in the US population, post- 2000. Sci Total Environ; in press.
Esta informacion también está disponible a través de enlaces de la página web de la Administración de Alimentos y Medicamentos de Estados Unidos: Richardson GM, et al. Final Report. Mercury Exposure and Risks from Dental Amalgam, Part 1: Updating Exposure, Re-examining Reference Exposure Levels, and Critically Evaluating Recent Studies. Ottawa, Ontario:SNC-Lavalin Environment (2010). Disponible en: http://tinyurl.com/3pf55zz [consultado el 19 de julio de 2011]. Richardson GM, et al. Final Report. Mercury Exposure and Risks from Dental Amalgam, Part 2: Cumulative Risk Assessment and Joint Toxicity: Mercury Vapour, Methyl Mercury and Lead. Ottawa, Ontario:SNC-Lavalin Environment (2010). Disponible en: http://tinyurl.com/439agey [consultado el 19 de julio de 2011].
Gardner RM, et al. Differential immunotoxic effects of inorganic and organic mercury species in vitro. Toxicol Lett 198(2):182–190 (2010); http://dx.doi.org/10.1016/j.toxlet.2010.06.015.
Nyland JF, et al. Fetal and maternal immune responses to methylmercury exposure: A cross-sectional study. Environ Res 111(4):584–589 (2011); http://dx.doi.org/10.1016/j.envres.2011.02.010.
Gardner RM, et al. Mercury induces an unopposed inflammatory response in human peripheral blood mononuclear cells in vitro. Environ Health Perspect 117(12):1932–1938 (2009); http://dx.doi.org/10.1289/ehp.090085.
Via CS, et al. Low-dose exposure to inorganic mercury accelerates disease and mortality in acquired murine lupus. Environ Health Perspect 111(10):1273–1277 (2003); http://dx.doi.org/10.1289/ehp.6064
Feingold BJ, et al. A niche for infectious disease in environmental health: rethinking the toxicological paradigm. Environ Health Perspect 118(8):1165–1172 (2010); http://dx.doi.org/10.1289/ehp.0901866.
Summers AO. Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. Anim Biotechnol 17(2):125–135 (2006); http://dx.doi.org/10.1080/10495390600957217.
Summers AO, et al. Mercury released from dental “silver” fillings provokes an increase in mercury- and antibiotic-resistant bacteria in oral and intestinal floras of primates. Antimicrob Agents Chemother 37(4):825–834 (1993); PMID:8280208.
Cavaco LM, et al. Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in methicillin-resistant Staphylococcus aureus CC398 isolates. Antimicrob Agents Chemother 54(9):3605–3608 (2010); http://dx.doi.org/10.1128/AAC.00058-10.
Skurnik D, et al. Is exposure to mercury a driving force for the carriage of antibiotic resistance genes? J Med Microbiol 59(7):804–807 (2010); http://dx.doi.org/10.1099/jmm.0.017665-0.
Rappaport SM, Smith MT. Environment and disease risks. Science 330(6003):460–461 (2010); http://dx.doi.org/10.1126/science.1192603.
Wang Z, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63 (2011); http://dx.doi.org/10.1038/nature09922.
Domazet-Lošo T, Tautz D. An ancient evolutionary origin of genes associated with human genetic diseases. Mol Biol Evol 25(12):2699–2707 (2008); http://dx.doi.org/10.1093/molbev/msn214.
Erb-Downward JR, et al. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS ONE 6(2):e16384(2011); http://dx.doi.org/10.1371/journal.pone.0016384.
Costello EK, et al. Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697 (2009); http://dx.doi.org/10.1126/science.1177486.