2011, Number 3
<< Back Next >>
Arch Neurocien 2011; 16 (3)
Effect og glycine administration on motor function in rats after traumatic injury of the spinal cord
Paredes-Espinosa MA, Flores-Mondragón G, Perea-Paz JM, Martínez-Canseco CJ, Méndez-Heredia J
Language: Spanish
References: 46
Page: 119-124
PDF size: 184.04 Kb.
ABSTRACT
After traumatic spinal cord injury (TSCI) decrease glycine level. The effects of administration of glycine are not fully understood.
Objetive: evaluate functional motor recovery of TSCI in rats after administration of glycine.
Material and method: TSCI was made in T8, under anesthesia in two groups Wistar rats. One group received glycine (TSCI+GLI), the other (TSCI+VEH) and healty rats group received vehicle. After the lesion, the spasticity and motor performance was assessed after TSCI using beam-walking paradigm and the footprint analysis for 8 weeks.
Results: after the lesion, spasticity and beam-walking and footprint analysis showed an important motor deficit. Moreover, a slightly improvement were observed in the TSCI+GLI group, although no significant differences were found when the TSCI+GLI and TSCI+VEH groups were compared.
Conclusions: the motor alteration taken place by the TSCI was valued appropriately by the battery of tests used motor performance. The glycine didn’t produce an effect statistically significant on the recovery of the complex patterns of sensory-motor integration after the TSCI, suggesting the use of different glycine dose and of pharmaceutical that inhibit the formation of free radicals, inflammatory reaction, such cyclosporin-A, and deferoxamine to completely abolish the oxidative effect of ferrous iron.
REFERENCES
Buchanan E, Nawoczenski D. An overview. Spinal cord injury: concepts and management approaches: Editorial William and Wilkins, 1997.
Adams MM, Hicks AL. Spasticity after spinal cord injury. Spinal Cord 2005; 43: 577-86.
Kita M, Goodkin DE. Drugs used to treat spasticity. Drugs 2000; 59(3):487-95.
Bender del Busto JA, Hernández E, Prida M, Araujo F, Zamora P. Caracterización clínica de pacientes con lesión medular traumática. Rev Mex Neurosci 2002;3(3):135-42.
Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis. 2004; 15(3):415-36.
Mautes A EM, Weinzierl MR, Donovan F, Noble LJ. Vascular events after spinal cord injury: Contribution to secondary pathogenesis. Physical Therapy 2000;89(7):673-8.
Tator HT. Update on the patophysiology and pathology of acute spinal cord injury. Brain pathology 1995;5:407-13.
Faden AI, Demediuk P, Panter SS, Vink R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 1989; 244(4906):798-800.
Panter S, Faden AI. Pretreatment with NMDA antagonists limits release of excitatory amino acids following traumatic brain injury. Neuroscience Letters 1992;136(2):165-8.
Droge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002; 82 (1): 47-95.
Bao F, John SM, Chen Y, Mathison RD, Weaver LC. The tripeptide phenylalanine-(d) glutamate-(d) glycine modulates leukocyte infiltration and oxidative damage in rat injured spinal cord. Neuroscience 2006; 14083:1011-22.
Azbill R, Mu X, Bruce-Keller A, Mattson M, Springer J. Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res. 1997; 765: 283-90.
Paredes MA. Mecanismos patofisiológicos de la lesión traumática de la médula espinal. En Paredes MA. Influencia de la desferroxamina sobre el nivel de hierro después de lesión traumática de la médula espinal en rata. Tesis de maestría 2005:16-8.
Vavrek R J, Girgis W, Tetzlaff G, Hiebert W, Fouad K. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain 2006;129:1534-45.
Zhang L, Peoples R, Oz M, Judith Harvey-White J, Weight F, Brauneis U. Potentiation of NMDA receptor-mediated responses by dynorphin at low extracellular glycine concentrations. J Neurophysiol 1997;78(2):582-90.
Ahmadi S, Muth-Selbach U, Lauterbach A, Lipfert P, Neuhuber W, Zeilhofer UH. Facilitation of Spinal NMDA Receptor Currents by Spillover of Synaptically Released Glycine. Science 2000; 3300 (5628): 2094-7.
Madry Ch, Betz H, Geiger J, Laube B. Potentiation of glycinegated NR1/NR3A NMDA receptors relieves Ca2+-dependent outward rectification. Frontiers in Molecular Neuroscience 2010; (3):1-8.
Simpson RK Jr, Gondo M, Robertson CS, Goodman JC. The influence of glycine and related compounds on spinal cord injuryinduced spasticity. Neurochem Res 1995; 20 (10):1203-10.
Baskys A, Bayazitov I, Fang L, Blaabjerg M, Poulsen FR, Zimmer J. Group I metabotropic glutamate receptors reduce excitotoxic injury and may facilitate neurogenesis. Neuropharmacology 2005; 49 (Suppl 1): 146-56.
De Leon R, Roy R, Edgerton R. Is the recovery of stepping following spinal cord injury mediated by modifiying existing neural pathways or by generating new pathways? a perspective. Physical Therapy 2001; 81 (12):1904-11.
Matilla B, Mauriz JL, Culebras M, González-Gallego J, González P. La glicina: un nutriente antioxidante protector celular. Nutr Hosp 2002;17(1):2-9.
Wheeler M, Stachlewitz RF, Yamashina S, Ikejima K, Morrow AL, Thurman RG. Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production. FAESB J. 2000; 14: 476-84.
Miyazato M, Sugaya K, Nishijima S, Ashitomi K, Hatano T, Ogawa Y. Inhibitory effect of intrathecal glycine on the micturition reflex in normal and spinal cord injury rats. Exp Neurol 2003; 183(1): 232-40.
Simpson RK Jr, Robertson CS, Goodman JC. The role of glycine in spinal shock. J Spinal Cord Med.1996; 19(4):215-24.
Hall P, Smith J, Mote T, Campbell R. Glycine and experimental spinal spasticity. Neurology 1979;29:262-7.
Smith J, Hall P, Galvin M. Effects of glycine administration on canine experimental spinal spasticity and the level of glycine, glutamate, and aspartate in the lumbar spinal cord. Neurosrug. 1979;4:153-6.
Kehne J, Ketteler H, Kane J, McCloskey TC, Senyah Y, Palfreyman M. MDL 27,531 reduces spontaneous hindlimb contractions in rats with chronic transections of the spinal cord. Neuroscience Letters 1992;147:101-5.
Lee A, Patterson V. A double-blind study of L-threonine in patients with spinal spasticity. Acta Neurologica Scandinavica 1993;88 (5):334-8.
Oda M, Kure S, Sugawara T, Yamaguchi S, Kojima K, Shinka T, et al. Direct correlation between ischemic injury and extracellular glycine concentration in mice with genetically altered activities of the glycine cleavage multienzyme system. Stroke 2007;38; 2157-64.
Knigth J. Neural mechanisms of attention: The northern California years. Neural Plasticity 2000;7(1-2):127-31.
Hruska RE, Kennedy S, Silbergeld EK. Quantitative aspects of normal locomotion in rats. Life Sciences 1979;25:171-80.
Saadoun S, Bell A, Verkman A, Papodoupoulos M. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deifient mice. Brain 2008;131:107-1098.
Fenrich K, Rose K. Spinal interneuron axons spontaneously regenerate after spinal cord injury in the adult feline. J Neuroscien 2009;29:12145-58.
Grillner S. The spinal locomotor CPG: a target after spinal cord injury. En L. McKerracher, G. Doucet and S. Rossignol, Editores. Progress in Brain Research, Vol. 137 Elsevier Science B.V. 2002.
Grill R, Murai K, Blesch A, Gage FH, Tuszynski1 MH. 3 Cellular Delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neuroscien 1997; 17(14):5560–72.
Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neuroscien 2006;26(13):3377-89.
McEwen ML, Springer JE. Quantification of locomotor recovery following spinal cord contusion in adult rats. J Neurotrauma 2006; 23 (11): 1632-53.
Budai D, Wilcox GL, Larson A. Enhancement of NMDA-evoked neuronal activity by glycine in the rat spinal cord in vivo. Neuroscience Letters 1992; 135:265-8.
Diaz-Ruiz A, Vergara P, Perez-Severiano F, Segovia J, Guizar-Sahagun J, Ibarra A, et al. Cyclosporin-A inhibits constitutive nitric oxide synthase activity and neuronal and endothelial nitric oxide synthase expressions after spinal cord injury in rats. Neurochem Res 2005; 30(2):245-51.
Schulz JB, Matthews RT, Flint M. Role of nitric oxide in neurodegenereative diseases. Curr Opinion in Nerology 1995;8:480-6.
Sharma H S, Westman J, Olsson Y, Alm P. Involvement of nitric oxide in acute spinal cord injury: an immunocytochemical study using light and electron microscopy in the rat. Neuroscien Res 1996; 24 (4):373-84.
Sharma HS, Badgaiyan RD, Alm P, Mohanty S, Wiklund L. Neuroprotective effects of nitric oxide synthase inhibitors in spinal cord injury induced pathophysiology and motor functions: an experimental study in the rat. Ann. N.Y. Acad Sci 2005;1053:422-34.
Hausmann ON. Post-traumatic inflammation following spinal cord injury. Spinal Cord 2003;41:369-78.
Díaz-Ruíz A, Vergara P, Pérez-Severiano F, Segovia J, Guizar- Sahagún G, et al. Cyclosporin-A inhibits constitutive nitric oxide synthase activity and neuronal and endothelial nitric oxide synthase expressions after spinal cord injury in rats. Neurochem Res 2005;30(2):245-51.
Urushitani M, Nakamizo T, Inoue R, Sawada H, Kihara T, Honda K, et al. N-methyl-D-aspartate receptor-mediated mitochondrial Ca2+ overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca2+ influx. J Neurosci Res 2001;63(5):377-87.
Qu W, Ikejima K, Zhong Z, Waalkes MP, Thurman RG. Glycine bloks the increase in intracellular free Ca2+ due to vasoactive mediators in hepatic parenchymal cells. Am J Physiol Gastrointest Liver 2002; 283:G1249-G55.