2011, Number 2
<< Back Next >>
Rev Mex Ing Biomed 2011; 32 (2)
Identification of functional sequences using associative memories
Román-Godínez I, Garibay-Orijel C, Yáñez-Márquez C
Language: Spanish
References: 21
Page: 109-118
PDF size: 396.90 Kb.
ABSTRACT
The identification and discrimination of functional sequences or mutations is very helpful in the medical area. Promoter and splice-junction identification, gene finding, DNA or Aminoacid database searching are some examples. Pattern recognition algorithms are candidates to perform this tasks. In this work we present a model, based on AlphaBeta associative memory and NeedlemanWunsch algorithm, to correctly recall altered version of learning patterns with one or more of the following modifications: insertions, deletions, and mutations, very common alterations in DNA and Aminoacid sequences. Moreover, this model preserve one of the most important advantages in associative memories, the correct recall of the fundamental set. To test the performance of the algorithm on bioinformatics and biomedical applications, the model presented here was tested using two datasets; one from the UCI repository; refered to promoter identification and the second one to using the genome of the
Variovorax paradoxus organism obtained from the NCBI repository.
REFERENCES
Baldi P, Brunak S. Bioinformatics: the machine learning approach. MIT Press, (Cambridge) 2001.
Von Heijne G. Sequence analysis in molecular biology: Treasure trove or trivial pursuit. Academic Press (London), 1987.
Doolittle RF. Of URFs and ORFs: A primer on how to analyze derived amino acid sequences. University Science Books, Mill Valley (California) 1986.
Wolfsberg TG, Wetterstrand KA, Guyer MS, Collins FS, Baxevanis AD. «A user’s guide to the human genome». Nature Genetics 2002; 32: 1-79.
Setubal J, Meidanis J. Introduction to computational molecular biology. International Thomson Publishing (Boston, MA), 1999.
Lesk AM. Introduction to Bioinformatics. Oxford University Press, 2008.
Ray SS, Bandyopadhyay S, Mitra P, Pal SK. «Bioinformatics in neurocomputing framework». Circuits, Devices and Systems, IEE Proceedings 2005; 152(5): 556–564.
Mitra S, Hayashi Y. «Bioinformatics with soft computing». Systems, man, and cybernetics, Part C. Applications and Reviews, IEEE Transactions 2006; 36(5): 616-635.
Salzberg SL, Searls DB, Kasif S. Computational methods in molecular biology. Elsevier Science 1998.
Zepeda HM, Perea-Araujo L, Zarate-Segura PB, Vázquez-Pérez JA, Miliar-García A, Garibay-Orijel C, Domínguez-López A, Badillo-Corona JA, López-Orduna E, García-González OP, Villasenor-Ruiz I, Ahued-Ortega A, Aguilar-Faisal L, Bravo J, Lara-Padilla E, García-Cavazos RJ. Identification of influenza: A pandemic (H1N1) 2009 variants during the first 2009 influenza outbreak in Mexico City. Journal of Clinical Virology: the Official Publication of the Pan American Society for Clinical Virology 2010; 48: 36-39.
Zepeda-López HM, Perea-Araujo L, Miliar-García AA, Domínguez-López B, Xoconostle-Cazarez E, Lara-Padilla JA, Ramírez-Hernández E, Sevilla-Reyes ME, Orozco A, Ahued-Ortega I, Villasenor-Ruiz RJ, García-Cavazos, Teran LM. Inside the outbreak of the 2009 influenza A (H1N1) virus in Mexico. PloS One 2010; 5: e13256.
Hassoun MH. Associative neural memories: Theory and implementation. Oxford University Press (New York), 1993.
Ritter GX, Sussner P, Díaz-de-León JL. «Morphological Associative Memories». IEEE Transactions on Neural Networks 1998; 9(2): 281-293.
Hopfield JJ. «Neural networks and physical systems with emergent collective computational abilities». Biophysics 1982; 79: 2554-2558.
Yáñez-Márquez C. Associative memories based on order relations and binary operators. PhD Thesis, Center for Computing Research, National Polytechnic Institute, Mexico, D.F., 2002.
Román-Godínez I, Yáñez-Márquez C. «Complete Recall on Alpha-Beta Heteroassociative Memory». Lecture Notes. Computer Science 2007; 4827: 193-202.
Román-Godínez I, López-Yáñez I, Yáñez-Márquez C. «Classifying patterns in bioinformatics databases by using Alpha-Beta associative memories». In: Amandeep S, Sidhu-Tharam SD, editors. Biomedical Data and Applications in Studies in Computational Intelligence. Springer 2009; 187-210.
Needleman SB, Wunsch CD. «A general method applicable to the search for similarities in the amino acid sequence of two proteins». Journal of Molecular Biology 1970; 48(3): 443-453.
Henikoff S, Henikoff JG. «Amino acid substitution matrices from protein blocks». Proc Natl Acad Sci U SA 1992; 89(22): 10915-10919.
Asuncion A, Newman DJ. UCI Machine Learning Repository, Irvine, CA: University of California, Department of Information and Computer Science. Available at: http://www.ics.uci.edu/~mlearn/MLRepository.html
Brunak S, Engelbrecht J, Knudsen S. «Prediction of human mRNA donor and acceptor sites from the DNA sequence». J Mol Biol 1991; 220: 49-65.