2011, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2011; 14 (1)
La Vía Rb/E2f Y La Familia de Proteínas Represoras Polycomb en el Desarrollo de Cáncer
Dávalos-Salas MI, Recillas-Targa F
Language: Spanish
References: 79
Page: 38-50
PDF size: 209.28 Kb.
ABSTRACT
The coordinated contribution of the E2F-family of transcription factors is critical for the proper control of the cell
cycle with consequences in the cellular homeostasis. Such kind of regulation requires a renewed vision of the
control of the cell cycle through the basis of epigenetic mechanisms. One of such regulatory components is the
Polycomb Group (PcG) of proteins which have been involved in cancer development through the anomalous
regulation, at an epigenetic level, of tumour suppressor genes such as
BRC1, p16, and
p53, among others. In
particular, the tumour suppressor gene
Retinoblastoma (Rb) plays a central role in the regulation of the cell cycle
and is regulated by PcG proteins. The relationship among E2F members, PcG and Rb has not been examined
in detail. Here, we describe the epigenetic interaction among these proteins, their association with epigenetic
processes and their contribution to cancer development.
REFERENCES
Sherr, C.J. Principles of tumor suppression. Cell 116, 235-246 (2004).
Luo, J., Solimini, N.L. & Elledge, S.J. Principles of cancer therapy: oncogene and nononcogene addiction. Cell 136, 823-837 (2009).
Weinberg, R.A. Tumor suppressor genes. Science 254, 1138-1146 (1991).
Spitale, R.C., Tsai, M.C. & Chang, H.Y. RNA templating the epigenome: Long noncoding RNAs as molecular scaffolds. Epigenetics 6, 539-543 (2011).
Cairns, B.R. The logic of chromatin architecture and remodelling at promoters. Nature 461, 193-198 (2009).
Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol 7, 437-447 (2006).
Maeda, R.K. & Karch, F. The ABC of the BX-C: the bithorax complex explained. Development 133, 1413-1422 (2006).
Sarma, K., & Reinberg, D. Histone variants meet their match. Nat Rev Mol Cell Biol 6(2), 139-149 (2005).
Peters, A.H., et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577-1589 (2003).
Rougeulle, C., et al. Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol. Cell. Biol. 24, 5475-5484 (2004).
Okamoto, I., Otte, A.P., Allis, C.D., Reinberg, D., & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644-649 (2004).
Barski, A., et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837 (2007).
Wasserman, W.W., & Sandelin, A. Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet 5, 276-287 (2004).
DeGregori, J., & Johnson, D.G. Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Curr. Mol. Med. 6, 739-748 (2006).
Dimova, D.K., & Dyson, N.J. The E2F transcriptional network: old acquaintances with new faces. Oncogene24, 2810-2826 (2005).
Xu, X., et al. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res. 17, 1550-1561 (2007).
Sherr, C.J., & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103-12 (2002).
Polager, S., & Ginsberg, D. E2F - at the crossroads of life and death. Trends Cell Biol 18, 528-535 (2008).
Oberley, M.J., Inman, D.R., & Farnham, P.J. E2F6 negatively regulates BRCA1 in human cancer cells without methylation of histone H3 on lysine 9. J. Biol. Chem. 278, 42466-42476 (2003).
Di Fiore, B., et al. Cytosine methylation transforms an E2F site in the retinoblastoma gene promoter into a binding site for the general repressor methylcytosine-binding protein 2 (MeCP2). Nucleic Acids Res. 27, 2852-2859 (1999).
Trimarchi, J.M., & Lees, J.A. Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell. Biol 3, 11-20 (2002).
Storre, J., et al. Silencing of the meiotic genes SMC1beta and STAG3 in somatic cells by E2F6. J. Biol. Chem. 280, 41380-41386 (2005).
Christensen, J., et al. Characterization of E2F8, a novel E2F-like cellcycle regulated repressor of E2F-activated transcription, Nucleic Acids Res. 33, 5458-5470 (2005).
Logan, N., et al. E2F-8: an E2F family member with a similar organization of DNA-binding domains to E2F-7. Oncogene24, 5000-5004 (2005).
Schwartz, Y.B., & Pirrotta, V. Polycomb complexes and epigenetic states. Curr. Opin. Cell Biol. 20, 266-273 (2008).
Pien, S., & Grossniklaus, U. Polycomb group and trithorax group proteins in Arabidopsis, Biochim. Biophys. Acta 1769, 375-382 (2007).
Margueron, R., & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343-349 (2011).
Whitcomb, S.J., Basu, A., Allis, C.D., & Bernstein, E. Polycomb Group proteins: an evolutionary perspective. Trends Genet, 23, 494-502 (2007).
Cao, R., & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol.Cell 15, 57-67 (2004).
Blomen, V.A., & Boonstra, J. Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle. Cell. Mol. Life Sci. 68, 27-44 (2011).
Lagarou, A., et al. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev. 22, 2799-2810 (2008).
Schwartz, Y.B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nature Genet.38, 700-705 (2006).
Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H., & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123-1136 (2006).
Vincenz, C., & Kerppola, T.K. Different polycomb group CBX family proteins associate with distinct regions of chromatin using nonhomologous protein sequences. Proc. Natl. Acad. Sci. U S A 105, 16572-16577 (2008).
Wu, J.I., Lessard, J., & Crabtree, G.R. Understanding the words of chromatin regulation. Cell 136, 200-206 (2009).
Honig, A., et al. Overexpression of polycomb protein BMI-1 in human specimens of breast, ovarian, endometrial and cervical cancer. Anticancer Res. 30, 1559-1564 (2010).
Suvà, M.L., et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 69, 9211-9218 (2009).
Zhang, X.W., et al. Oncogenic role of the chromobox protein CBX7 in gastric cancer. J. Exp. Clin. Cancer Res. 29, 114 (2010).
Müller, J., & Verrijzer, P. Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr. Opin. Genet. Dev. 19, 150-158 (2009).
Ku, M., et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).
Simon, J.A., & Kingston, R.E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol. 10, 697-708 (2009).
Woo, C.J., Kharchenko, P.V., Daheron, L., Park, P.J.. & Kingston, R.E. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140, 99-110 (2010).
Liu, Y., Shao, Z., & Yuan, G.C. Prediction of Polycomb target genes in mouse embryonic stem cells. Genomics 96, 17-26 (2010).
Cao, R., et al. Role of histone H3 lysine 27 methylation in Polycombgroup silencing. Science 298, 1039-1043 (2002).
Chen, H., Tu, S.W., & Hsieh, J.T. Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J. Biol. Chem. 280, 22437-22444 (2005).
Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893-2905 (2002).
Nekrasov, M., Wild, B., & Müller, J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 6, 348-353 (2005).
Mills, A.A. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat. Rev. Cancer 10, 669-682 (2010).
Creyghton, M.P., et al. H2AZ Is Enriched at Polycomb Complex Target Genes in ES Cells and Is Necessary for Lineage Commitment. Cell 135, 649-661 (2008).
Gearhart, M.D., Corcoran, C.M., Wamstad, J.A., & Bardwell, V.J. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol. Cell. Biol. 26, 6880-6889 (2006).
Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D.M., & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296, 1132-1136 (2002).
Buchwald, G., et al. Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J. 25, 2465-2474 (2006).
de Bie, P., Zaaroor-Regev, D., & Ciechanover, A. Regulation of the Polycomb protein RING1B ubiquitination by USP7. Biochem. Biophys. Res. Commun. 400, 389-395 (2010).
de Nápoles, M., et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663-676 (2004).
Schoeftner, S., et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J. 25, 3110-3122 (2006).
Alder, O., et al. Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development 137, 2483-2492 (2010).
Bernstein, E., et al. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol. 26, 2560-2569 (2006).
Hung, T., & Chang, H.Y. Long noncoding RNA in genome regulation: Prospects and mechanisms. RNA Biol. 7, 582-585 (2010).
Kaneko, S., et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev. 24,2615-2620 (2010).
Wu, H.A., & Bernstein, E. Partners in imprinting: noncoding RNA and polycomb group proteins. Dev. Cell 15, 637-638 (2008).
Thomas, M.J., & Seto, E. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene 236, 197-208 (1999).
Caretti, G., Di Padova, M., Micales, B., Lyons, G.E., & Sartorelli, V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 18, 2627-2638 (2004).
Sánchez, C., et al. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol. Cell. Proteomics 6, 820-834 (2007).
Attwooll, C., et al. A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. J. Biol. Chem. 280, 1199-1208 (2005).
Giangrande, P.H., et al. A role for E2F6 in distinguishing G1/S- and G2/M-specific transcription. Genes Dev.18, 2941-2951 (2004).
Lyons, T.E., Salih, M., & Tuana, B.S. Activating E2Fs mediate transcriptional regulation of human E2F6 repressor. Am. J. Physiol. Cell. Physiol. 290, C189-C199 (2006).
McLaughlin-Drubin, M.E., Huh, K.W., & Münger, K. Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J. Virol. 82, 8695-8705 (2008).
Deshpande, A.M., et al. PHC3, a component of the hPRC-H complex, associates with E2F6 during G0 and is lost in osteosarcoma tumors. Oncogene 26, 1714-1722 (2007).
Kehoe, S.M., et al. A conserved E2F6-binding element in murine meiosis-specific gene promoters. Biol. Reprod. 79, 921-930 (2008).
Hanahan, D., & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57-70 (2000).
Classon, M., & Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nat. Rev. Cancer 2, 910-917 (2002).
72.Knudson, A.G. Jr. Retinoblastoma: a prototypic hereditary neoplasm. Semin. Oncol. 5, 57-60 (1978).
Macleod, K. Tumor suppressor genes. Curr. Opin. Genet. Dev. 10, 81-93 (2000).
De La Rosa-Velázquez, I.A., Rincón-Arano, H., Benítez-Bribiesca, L., & Recillas-Targa, F. Epigenetic regulation of the human retinoblastoma tumor suppressor gene promoter by CTCF. Cancer Res. 67, 2577-2585 (2007).
Dávalos-Salas, M, et al. Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter. BMC Cancer 11, 232 (2011).
Kotake, Y., et al. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev. 21, 49-54 (2007).
Longworth, M.S., & Dyson, N.J. pRb, a local chromatin organizer with global possibilities. Chromosoma 119, 1-11 (2010).
Bantignies, F., et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144, 214-226 (2011).
Sato, F., Tsuchiya, S., Meltzer, S.J., & Shimizu, K. MicroRNAs and Epigenetics. FEBS J. 278, 1598-1609 (2011).