2011, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2011; 14 (1)
La Vía Rb/E2f Y La Familia de Proteínas Represoras Polycomb en el Desarrollo de Cáncer
Dávalos-Salas MI, Recillas-Targa F
Idioma: Español
Referencias bibliográficas: 79
Paginas: 38-50
Archivo PDF: 209.28 Kb.
RESUMEN
El control adecuado del ciclo celular mediante la acción coordinada de la familia de factores de transcripción
E2F resulta ser clave para la homeostasis celular. El entender su modo de acción desde una perspectiva
epigenética resulta ser un tema de gran actualidad y cambia la visión de cómo es regulado el ciclo celular. Uno
de los principales reguladores epigenéticos está conformado por el grupo de proteínas Polycomb (PcG),
relacionadas con procesos patológicos como el cáncer, a través de la desregulación a nivel epigenético de genes
supresores de tumores como
BRCA1, p16 y
p53, entre otros. Con relación a lo anterior, la regulación del gen
supresor
Retinoblastoma (Rb) ha sido ampliamente estudiado dada su importante participación como regulador
negativo del ciclo celular, pero más reciente se ha demostrado que su modo de acción está relacionado con
el grupo de proteínas PcG. Cada uno de los procesos que involucran a componentes de la familia de factores
E2F, los miembros de Polycomb y la familia de proteína Rb, parecen ser en cierta medida independientes y,
por ende, poco relacionados. Sin embargo, existen evidencias de una convergencia a nivel epigenético en la
acción de estos conjuntos de moléculas reguladoras de la progresión del ciclo celular y su desregulación nos
puede llevar a entender mejor su contribución al desarrollo de procesos patológicos como el cáncer.
REFERENCIAS (EN ESTE ARTÍCULO)
Sherr, C.J. Principles of tumor suppression. Cell 116, 235-246 (2004).
Luo, J., Solimini, N.L. & Elledge, S.J. Principles of cancer therapy: oncogene and nononcogene addiction. Cell 136, 823-837 (2009).
Weinberg, R.A. Tumor suppressor genes. Science 254, 1138-1146 (1991).
Spitale, R.C., Tsai, M.C. & Chang, H.Y. RNA templating the epigenome: Long noncoding RNAs as molecular scaffolds. Epigenetics 6, 539-543 (2011).
Cairns, B.R. The logic of chromatin architecture and remodelling at promoters. Nature 461, 193-198 (2009).
Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol 7, 437-447 (2006).
Maeda, R.K. & Karch, F. The ABC of the BX-C: the bithorax complex explained. Development 133, 1413-1422 (2006).
Sarma, K., & Reinberg, D. Histone variants meet their match. Nat Rev Mol Cell Biol 6(2), 139-149 (2005).
Peters, A.H., et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577-1589 (2003).
Rougeulle, C., et al. Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol. Cell. Biol. 24, 5475-5484 (2004).
Okamoto, I., Otte, A.P., Allis, C.D., Reinberg, D., & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644-649 (2004).
Barski, A., et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837 (2007).
Wasserman, W.W., & Sandelin, A. Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet 5, 276-287 (2004).
DeGregori, J., & Johnson, D.G. Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Curr. Mol. Med. 6, 739-748 (2006).
Dimova, D.K., & Dyson, N.J. The E2F transcriptional network: old acquaintances with new faces. Oncogene24, 2810-2826 (2005).
Xu, X., et al. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res. 17, 1550-1561 (2007).
Sherr, C.J., & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103-12 (2002).
Polager, S., & Ginsberg, D. E2F - at the crossroads of life and death. Trends Cell Biol 18, 528-535 (2008).
Oberley, M.J., Inman, D.R., & Farnham, P.J. E2F6 negatively regulates BRCA1 in human cancer cells without methylation of histone H3 on lysine 9. J. Biol. Chem. 278, 42466-42476 (2003).
Di Fiore, B., et al. Cytosine methylation transforms an E2F site in the retinoblastoma gene promoter into a binding site for the general repressor methylcytosine-binding protein 2 (MeCP2). Nucleic Acids Res. 27, 2852-2859 (1999).
Trimarchi, J.M., & Lees, J.A. Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell. Biol 3, 11-20 (2002).
Storre, J., et al. Silencing of the meiotic genes SMC1beta and STAG3 in somatic cells by E2F6. J. Biol. Chem. 280, 41380-41386 (2005).
Christensen, J., et al. Characterization of E2F8, a novel E2F-like cellcycle regulated repressor of E2F-activated transcription, Nucleic Acids Res. 33, 5458-5470 (2005).
Logan, N., et al. E2F-8: an E2F family member with a similar organization of DNA-binding domains to E2F-7. Oncogene24, 5000-5004 (2005).
Schwartz, Y.B., & Pirrotta, V. Polycomb complexes and epigenetic states. Curr. Opin. Cell Biol. 20, 266-273 (2008).
Pien, S., & Grossniklaus, U. Polycomb group and trithorax group proteins in Arabidopsis, Biochim. Biophys. Acta 1769, 375-382 (2007).
Margueron, R., & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343-349 (2011).
Whitcomb, S.J., Basu, A., Allis, C.D., & Bernstein, E. Polycomb Group proteins: an evolutionary perspective. Trends Genet, 23, 494-502 (2007).
Cao, R., & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol.Cell 15, 57-67 (2004).
Blomen, V.A., & Boonstra, J. Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle. Cell. Mol. Life Sci. 68, 27-44 (2011).
Lagarou, A., et al. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev. 22, 2799-2810 (2008).
Schwartz, Y.B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nature Genet.38, 700-705 (2006).
Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H., & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123-1136 (2006).
Vincenz, C., & Kerppola, T.K. Different polycomb group CBX family proteins associate with distinct regions of chromatin using nonhomologous protein sequences. Proc. Natl. Acad. Sci. U S A 105, 16572-16577 (2008).
Wu, J.I., Lessard, J., & Crabtree, G.R. Understanding the words of chromatin regulation. Cell 136, 200-206 (2009).
Honig, A., et al. Overexpression of polycomb protein BMI-1 in human specimens of breast, ovarian, endometrial and cervical cancer. Anticancer Res. 30, 1559-1564 (2010).
Suvà, M.L., et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 69, 9211-9218 (2009).
Zhang, X.W., et al. Oncogenic role of the chromobox protein CBX7 in gastric cancer. J. Exp. Clin. Cancer Res. 29, 114 (2010).
Müller, J., & Verrijzer, P. Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr. Opin. Genet. Dev. 19, 150-158 (2009).
Ku, M., et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).
Simon, J.A., & Kingston, R.E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol. 10, 697-708 (2009).
Woo, C.J., Kharchenko, P.V., Daheron, L., Park, P.J.. & Kingston, R.E. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140, 99-110 (2010).
Liu, Y., Shao, Z., & Yuan, G.C. Prediction of Polycomb target genes in mouse embryonic stem cells. Genomics 96, 17-26 (2010).
Cao, R., et al. Role of histone H3 lysine 27 methylation in Polycombgroup silencing. Science 298, 1039-1043 (2002).
Chen, H., Tu, S.W., & Hsieh, J.T. Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J. Biol. Chem. 280, 22437-22444 (2005).
Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893-2905 (2002).
Nekrasov, M., Wild, B., & Müller, J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 6, 348-353 (2005).
Mills, A.A. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat. Rev. Cancer 10, 669-682 (2010).
Creyghton, M.P., et al. H2AZ Is Enriched at Polycomb Complex Target Genes in ES Cells and Is Necessary for Lineage Commitment. Cell 135, 649-661 (2008).
Gearhart, M.D., Corcoran, C.M., Wamstad, J.A., & Bardwell, V.J. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol. Cell. Biol. 26, 6880-6889 (2006).
Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D.M., & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296, 1132-1136 (2002).
Buchwald, G., et al. Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J. 25, 2465-2474 (2006).
de Bie, P., Zaaroor-Regev, D., & Ciechanover, A. Regulation of the Polycomb protein RING1B ubiquitination by USP7. Biochem. Biophys. Res. Commun. 400, 389-395 (2010).
de Nápoles, M., et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663-676 (2004).
Schoeftner, S., et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J. 25, 3110-3122 (2006).
Alder, O., et al. Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development 137, 2483-2492 (2010).
Bernstein, E., et al. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol. 26, 2560-2569 (2006).
Hung, T., & Chang, H.Y. Long noncoding RNA in genome regulation: Prospects and mechanisms. RNA Biol. 7, 582-585 (2010).
Kaneko, S., et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev. 24,2615-2620 (2010).
Wu, H.A., & Bernstein, E. Partners in imprinting: noncoding RNA and polycomb group proteins. Dev. Cell 15, 637-638 (2008).
Thomas, M.J., & Seto, E. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene 236, 197-208 (1999).
Caretti, G., Di Padova, M., Micales, B., Lyons, G.E., & Sartorelli, V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 18, 2627-2638 (2004).
Sánchez, C., et al. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol. Cell. Proteomics 6, 820-834 (2007).
Attwooll, C., et al. A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. J. Biol. Chem. 280, 1199-1208 (2005).
Giangrande, P.H., et al. A role for E2F6 in distinguishing G1/S- and G2/M-specific transcription. Genes Dev.18, 2941-2951 (2004).
Lyons, T.E., Salih, M., & Tuana, B.S. Activating E2Fs mediate transcriptional regulation of human E2F6 repressor. Am. J. Physiol. Cell. Physiol. 290, C189-C199 (2006).
McLaughlin-Drubin, M.E., Huh, K.W., & Münger, K. Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J. Virol. 82, 8695-8705 (2008).
Deshpande, A.M., et al. PHC3, a component of the hPRC-H complex, associates with E2F6 during G0 and is lost in osteosarcoma tumors. Oncogene 26, 1714-1722 (2007).
Kehoe, S.M., et al. A conserved E2F6-binding element in murine meiosis-specific gene promoters. Biol. Reprod. 79, 921-930 (2008).
Hanahan, D., & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57-70 (2000).
Classon, M., & Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nat. Rev. Cancer 2, 910-917 (2002).
72.Knudson, A.G. Jr. Retinoblastoma: a prototypic hereditary neoplasm. Semin. Oncol. 5, 57-60 (1978).
Macleod, K. Tumor suppressor genes. Curr. Opin. Genet. Dev. 10, 81-93 (2000).
De La Rosa-Velázquez, I.A., Rincón-Arano, H., Benítez-Bribiesca, L., & Recillas-Targa, F. Epigenetic regulation of the human retinoblastoma tumor suppressor gene promoter by CTCF. Cancer Res. 67, 2577-2585 (2007).
Dávalos-Salas, M, et al. Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter. BMC Cancer 11, 232 (2011).
Kotake, Y., et al. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev. 21, 49-54 (2007).
Longworth, M.S., & Dyson, N.J. pRb, a local chromatin organizer with global possibilities. Chromosoma 119, 1-11 (2010).
Bantignies, F., et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144, 214-226 (2011).
Sato, F., Tsuchiya, S., Meltzer, S.J., & Shimizu, K. MicroRNAs and Epigenetics. FEBS J. 278, 1598-1609 (2011).