2007, Number 2
<< Back Next >>
Anales de Radiología México 2007; 6 (2)
Valor estandarizado de captación máximo, determinado con Tomografía por Emisión de Positrones y Tomografía Computarizada. “Primera experiencia en México”
Altamirano LJ, Acosta BG, Ochoa CFJ, Vásquez ER, Hernández RS, Estrada G
Language: Spanish
References: 20
Page: 113-119
PDF size: 93.47 Kb.
ABSTRACT
Introduction: The positrons emission tomography and computerized tomography, is the most modern innovation in the Nuclear Medicine and of Radiology that is able to provide in vivo biological processes imaging, prior administration of marked radio particles with positrons emission, besides being useful as an anatomical and diagnostic framework when contrast means are used. This has been primarily of great help within the oncology field, since it offers anatomical and functional information at the cellular level.
Objective: To determine the maximum standardized intake value of fluorodesoxiglucose (18
FDG), in Mexican patients, in the different organs of normal concentration and to compare our cut level with that of the literature.
Material and methods: 136 oncological patients with an age range from 4 to 88 years were included, with a 50.6 year-old mean, from both genders, prevailing those of the masculine sex with a frequency of 51% and of 49% for the feminine sex that were referred to the service of PET-CT to be re-staged and whose result was negative for current illness. 18
F-FDG was used administered through intravenous via, determining the dose based on the patient’s weight. All patients prior to the study had a fast of 6-8 hours. Once tracer was injected, the patient remained in silence and dimness during 60 minutes prior to the study, during which they took plenty of simple water and stayed in rest. To all the patients the study of thighs proximal third to the base of the skull was carried out. Once the study was processed, the standardized intake value was determined in each part of the organism that concentrated the 18
FDG physiologically. Studies were obtained with a PET-CT equipment, which allows the acquisition of the metabolic and anatomical studies at the same time.
Results: Overall mean intake, for the different corporal structures was of: brownish fat 2.2, Waldeyer ring 1.9, lung 0.4, mediastinum 1.7, liver 1.8, spleen 1.8, kidneys 2.5, muscle 0.6, stomach 1.6, colon 1.8 and bone 0.4.
Conclusions: Minimum intake variations were observed from one patient to another, without exceeding normal ranges already stipulated by international standardizations. Neither statistically significant differences exist in the semi-quantification of SUV
max. So that our research agrees with that established in the literature.
REFERENCES
Altamirano LJ, Estrada SG, Carreras DJL. PET y PET/CT en Oncología. 1a Ed. México: Editorial Intersistemas; 2005, p. 180-2.
Czernin J, Schelbert H. PET/CT Imaging: Facts, opinions, hopes and questions. J Nucl Med 2004; 45(1): 15-35.
Altamirano LJ, Estrada G, Ochoa CFJ. Tomografía por emisión de positrones y tomografía computarizada en oncología. GAMO 2005; 4(6): 139-46.
Hamacher K, Coenen HH, Stoklin G. Efficient stereospecific synthesis of nocarrier- added. 2-(18F) - fluoro-2-deoxy-Dglucose using amino-polyether supported nucleophilic substitution. J Nucl Med 1986; 27: 235-8.
Hamacher K, Blessing G, Nebeling B. Computer-aided synthesis (CAS) of nocarrier added 2-(18F)-fluoro-2-deoxyglucose: an efficient automated system for the amino polyether-supported nucleophilic, fluorination. Appl J Radiat Isot 1990; 41: 49-65.
Estrada G, Altamirano LJ, Ochoa CFJ. Captaciones Fisiológicas y Variantes Normales en el Estudio PET/CT con 18FDG. Cirugía y Cirujanos 2007; 75(6): 9-19.
Mireles EM, Estrada G. En: Altamirano LJ, Estrada G, Carreras JL. PET y PET/ CT en ontología. 1a Ed. México: Ed. Intersistemas; 2005, p. 9-18.
Adams EJ, Almazan C, Morland B. Internacional Network of Agencies for Health Technology Assessment. Stockholm; 1999.
Altamirano LJ, Estrada G, Ochoa CFJ. Tomografía por emisión de positrones y tomografía computada (PET/CT) en carcinoma de pulmón. Cirugía y Cirujanos 2007; 75(4): 18-26.
Rodríguez M, Asensio C, Gómez MV, Carreras JL, Martín JM. Agencia de Evaluación de Tecnologías Sanitarias (AETS). Instituto de Salud Carlos IIIMinisterio de Sanidad y Consumo. Tomografía por Emisión de Positrones (PET) con 18FDG en Oncología Clínica (Revisión Sistémica). Madrid: AETS; 2001.
Haberkorn U, Strauss LG, Dimitrakopoulou A, Engenhart R, Oberdorfer F, Ostertag H, et al. PET studies of FDG metabolism in patients with recurrente colorectal tumors receiving radiotherapy. J Nulc Med 1991; 32: 1485-90.
Carreras DJL, Lapeña GL, Del Barrio CA. PET en Oncología. 1a Ed. Madrid: Editorial Nova Sidonia; 2002, p. 35-51.
Altamirano LJ, Estrada SG, Ochoa CFJ. Aplicaciones prácticas en protección radiológica y dosimetría con PET y PET/CT. Ann Rad Mex 2006; 5: 325-30.
Lomeña F, Gámez C, Cabrera A, Maldonado A, Jiménez UAM, Montz AR, Pérez CMJ, Carreras JL. La Tomografía por emisión de positrones en oncología. Madrid: Ed. Real Academia Nacional de Medicina; 2002.
Paquet ON, Albert A, Foidart J, Hustinx R. Within-patient variability of 18F-FDG: standardized uptake values in normal tissues. J Nucl Med 2004; 45: 784-8.
Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure Guideline for Tumor Imaging with 18F-FDG PET/CT 1.0. J Nucl Med 2006; 47(5): 885-95.
Estrada G, Altamirano LJ, Ochoa FJ. Captaciones fisiológicas y variantes normales en el estudio PET/CT con 18FDG. Cir Cir 2007; 75(6).
Altamirano LJ, Estrada SG. De la PET a la PET/CT. Ann Rad Mex 2006; 1: 9-19.
Gollub Marc J, Hong R, Sarasohn DM, Akhurst T. Limitations of CT during PET/CT. J Nucl Med 2007; 48: 1583-91.
Wong TZ, Paulson EK, Nelson RC, Patz EF Jr. Coleman RE. Practical Approach to Diagnostic CT Combined with PET. AJR 2007; 188: 622-9.