2010, Number 4
<< Back Next >>
Arch Neurocien 2010; 15 (4)
Neurocomputational models of language
Robles-Aguirre FA
Language: Spanish
References: 47
Page: 242-251
PDF size: 184.88 Kb.
ABSTRACT
This review discusses the plausibility of computational analysis of brain-language relations hypotheses. Proposals from linguistics and neurosciences are examined, as well as the origin and relevance of the neurocomputational models.
Development: computational models inspired on brain dynamics have triggered an intense debate within cognitive sciences about various psychological issues. One of the most thoroughly examined issues has been language and the cognitive processes involved. Linguistic evidence points to serial processing within a modular framework and based on a generative system which uses two kinds of elements: lexical items stored in long-term memory as unitary blocks retrieved to be used as building blocks for sentence construction, and rules that are applied to build morphological or syntactic structures in accordance to the requirements of a particular grammar and stored somewhere else. However, neuroscientific studies on language generation suggest that both components work in parallel, providing a fuzzy modular view of language with parallel processing considering overlapped representations and reciprocal inhibitory mechanisms, pointing to a connectionist view. Several neurocomputational models dealing with the implementation of language processing on brain-like systems are exposed to demonstrate that certain aspects of modular language processing theory have to be revisited. Finally, it is proposed that a theory of language processing can no longer continue to ignore the properties of the system on which it is implemented, as there is a growing number of characteristics of brain-like systems which seem to restrict the operations they perform and even determine.
REFERENCES
Hauser M, Chomsky N, Fitch WT. The faculty of language: What is it, who has it and how did it evolve?. Science 2002; 298 (22): 1569-79.
Chomsky N. Estructuras sintácticas. México: Siglo XXI Editores, 1984/1994.
Chomsky N. Aspectos de teoría de la sintaxis. Barcelona: Gedisa, 1995/1999.
Chomsky N. El programa minimalista. Madrid: Alianza Editorial, 1999.
Chomsky N. Linguistics and brain science. En Miyashita Y, Marantz A, O’Neil W, editores. Image, language, brain. Cambridge: MIT Press, 2000: 13-28.
Casti J. Would be worlds. Nueva York: John Wiley and Sons, 1997.
Gardner H. La nueva ciencia de la mente. Barcelona: Ediciones Paidós, 1996.
Burgos J. Una reconstrucción neuro-computacional del problema de los dos tipos de condicionamiento. En Rangel-Ligia A, Carlos- Lozada Silva M, editores. Contribuciones a la Psicología en Venezuela, Tomo III. Caracas: Fondo Editorial de Humanidades, Universidad Central de Venezuela, 1999: 215-49.
Rumelhart D, McClelland J, Hinton GE, Sejnowski TJ, Smolensky R, Williams R, Norman D. Introducción al Procesamiento Distribuido en Paralelo. Madrid: Alianza Editorial, 1992.
Anderson J, Rosenfeld E. Neurocompuntig. Foundations of Research. Cambridge: MIT Press, 1988.
Aleksander I, Morton H. Introduction to Neural Computing. Londres: Chapman and Hall, 1990.
Wasserman P. Neural Computing. Nueva York: Van Nostrand Reinhold, 1989.
Rumelhart D, McClelland J. On learning the past tenses of english verbs. En McClelland J, Rumelhart D & PDP Research Group. Parallel distributed processing: Explorations in the Microstructure of Cognition: Vol. 2. Psychological and Biological Models. Cambridge: Bradford Books/MIT press, 1986.
Haykin S. Neural networks: A comprehensive foundation. Nueva York: Prentice Hall, 1999.
Enquist M, Ghiralanda S. Animal learning & Neural networks. Princeton: Princeton University Press, 2005.
Kandel ER. Mecanismos celulares del aprendizaje y sustrato biológico de la individualidad. En Kandel E, Scwartz J, Jessell T, editores. Principios de Neurociencia. Madrid: McGraw-Hill Interamericana, 2000: 1247-78.
Ponce A. Extracción de reglas en redes neuronales difusas. Guadalajara. Universidad de Guadalajara, 2005.
Pinker S, Price A. On language and connectionism - analysis of a parallel distributed processing model of language acquisition. Cognition 1988; 28: 73-93.
Westermann G, Plunkett K. Connectionist models of inflection processing. Lingue e Linguaggio 2007; VI.2: 291-311.
Poeppel D, Hickok G. Towards a new functional anatomy of lanaguage. Cognition 2004; 92: 1-12.
Friederici A. Pathways to language: Fibertracts in the human brain. Trends in Cog Sci 2009; 13(4): 175-81.
Friederici A. Broca’s area and the ventral premotor cortex in language: Functional differentiation and specificity. Cortex 2006; 42: 472-5.
Shalom D, Poeppel D. Functional anatomic models of language: assembling the pieces. The Neuroscientist 2008; 14(1): 119-27.
Garagnani M, Wennekers T, Pulvermüller F. Recruitment and consolidation of cell assemblies for words by way of Hebbian learning and competition in a multi-layer neural network. Cogn Comp 2009; 1: 160-76.
Chomsky N. Three factors in language design. Ling Inq, 2005; 36 (1): 1-22.
Fitch WT, Hauser M y Chomsky N. The evolution of the language faculty: Clarifications and implications. Cognition 2005; 97: 179-210.
Chomsky N, Hauser M, Fitch WT. Appendix. The minimalist program. En http://www.wjn.harvard.edu/~mnkylab.
Pinker S, Jackendoff R. The faculty of language: what’s special about it?. Cognition 2005; 95: 201-36.
Jackendoff R, Pinker S. The nature of the language faculty and its implications for evolution of language. Cognition 2005; 97:211-25.
MacWhinney B, Leinbach J. Implementations are not conceptualizations: Revising the verb learning model. Cognition 1991; 40: 121-57.
Plunkett K, Marchman V. U-shaped learning and frequency-effects in a multilayered perceptron - Implications for child languageacquisition. Cognition 1991;38:43-102.
Westermann G. A constructivist neural network learns the past tense of english verbs. En: Proceedings of the GALA ’97 Conference on Language Acquisition; Edinburgo: HCRC. 1997; 393-8.
Westermann G. Emergent modularity and U-shaped learning in a constructivist neural network learning the english past tense. En: Gernsbacher, M. y Derry, J, editors. Proceedings of the Twentieth Annual Conference of the Cognitive Science Society;1998;1130-5.
Pinker S, Ullman MT. The past and future of the past tense. Trends in Cog Sci 2002; 6: 456-63.
Pinker S. Words and rules: the ingredients of language. Nueva York: Basic Books, 1999.
Jackendoff R. Foundations of language. Oxford: Oxford University Press, 2002.
Jackendoff R. A parallel architecture perspective on language processing. Brain Res 2007; 1146: 2-22.
Culicover P, Jackendoff R. The simpler syntax hypothesis. Trends in Cog Sci 2006; 10 (9): 413-8.
Culicover P., Jackendoff R. Simpler syntax. Oxford: Oxford University Press, 2005.
Balaguer RD, Rodríguez-Fornells A, Rotte M, Bahlmann J, Heinze H, Münte T. Neural circuits subserving the retrieval of stems and grammatical features in regular and irregular verbs. Hum Brain Mapp 2006; 27: 874-88.
Sahin N. Seeking the neural basis of grammar: English noun and verb morphological processing investigated with rapid eventrelated fMRI and intracortical electrophysiology (tesis). Cambrdige: Massachussets Institute of Technology, 2003.
Sahin N, Pinker S, Halgren E. Abstract grammatical processing of nouns and verbs in Broca’s area: Evidence from fMRI. Cortex 2006; 42: 540-62.
Pulvermüller F. The neuroscience of language. On brain circuits of words and serial order. Cambridge: Cambridge University Press, 2002.