2010, Número 4
<< Anterior Siguiente >>
Arch Neurocien 2010; 15 (4)
Método de localización estereotáxica del núcleo pedúnculo pontino en el ser humano
Arellano-Reynoso A
Idioma: Español
Referencias bibliográficas: 39
Paginas: 233-241
Archivo PDF: 566.55 Kb.
RESUMEN
El núcleo pedúnculo pontino (NPP) es una estructura heterogénea desde el punto de vista celular, bioquímico y funcional. Forma parte de la
región mesencefálica motora de forma extensa y se ha demostrado a través de estudios en modelos animales su participación en iniciación y mantenimiento del movimiento. Desde el punto de vista terapéutico se ha encontrado que los modelos animales de enfermedad de Parkinson presentan mejoría con activación y empeoran con la inhibición de este núcleo. Recién se ha realizado las primeras intervenciones quirúrgicas sobre esta estructura en seres humanos, con ellas se ha obtenido información acerca del registro eléctrico y respuesta de los pacientes con la estimulación eléctrica. Para la localización de esta estructura se cuenta en la actualidad con apoyo de estudios de imagen, atlas de estereotaxia, uso de microrregistro transoperatorio, estimulación y valoración del paciente durante dicho procedimiento. Todos estosrecursos de localización deben ser utilizarse de manera conjunta para mejorar resultados y disminuir al mínimo los riesgos de este procedimiento. Ahora, la intervención sobre este núcleo se vislumbra como una posibilidad de tratamiento de síntomas axiales resistentes a L-dopa en pacientes con enfermedad de Parkinson y otros síndromes parkinsónicos.
REFERENCIAS (EN ESTE ARTÍCULO)
Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T. Basal ganglia Efferents to the Brainstem centers controlling Postural Musle Tone and Locomotion: A New concept for understanding Motor disorders in basal ganglia dysfunction. Neuroscience 2003;119:293-308.
Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Dowsey-Limousin P, Benazzouz A, Le Bas JF, Benabid AL, Pollak P. Five years Follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 2003;349:1925-34.
Rodriguez-Oroz MC, Zamarbide I, Guridi J, Palmero MR, Obeso JA. Efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease 4 years after surgery: double blind and open label evaluation. Journal of neurology, neurosurgery, and psychiatry 2004´;75(10):1382-5.
Yokoyama, T. Sugiyama, K. Nishizawa, S. Yokota, N. Ohta, S. Uemura, K. Subthalamic nucleus stimulation for gait disturbance in Parkinson’s disease. Neurosurgery 1999;45(1):41-7;discussion 47-9.
Bejjani BP , Gervais D, Arnulf I, Papadopoulos S, Demeret S, Bonnet AM, Cornu P, Damier P and Agid Y. Axial parkinsonian symptoms can be improved: the role of levodopa and bilateral subthalamic stimulation. J Neurol Neurosurg Psychiatry 2000;68;595-600.
Welter ML, Houeto JL, Montcel T, Mesnage V, Bonnet AM, Pillon B, Arnulf I, Pidoux B, Dormont D, Cornu P, Agid Y. Clinical predictive factors of subtalamic stimulation in Parkinson’s disease. Brain 2002;125, 575-83.
Delmas A, Pertuiset B. Topomètrie Cranio-encéphalique chez l’homme. Masson 1959.
Nieuwenhuys R, Voogd J, van Huijzen C. The human central nervous system. A synopsis and atlas. 3rd ed. Berlin: Springer-Verlag; 1988.
Duvernoy H. The Human brain stem and cerebellum. Surface structure, vascularization and three-dimensional sectional anatomy with MRI. Springer-Verlag Wien New York, 1995.
Duane E. Neuroanatomy. An atlas of structures, sections and systems. 5th ed. Lippincott -Williams and Wilkins, 1997.
Garcia-Rill E, Biedermann JA, Chambers T, Skinner RD, Mrak RE, Husain M, Karson, C N. Mesopontine neurons in schizophrenia. Neuroscience 1995;66: 321-35.
Takakusaki K, Shiroyama T, Kitai ST. Two types of cholinergic neurons in the rat tegmental pedunculopontine nucleus: electrophysiological and morphological characterization. Neuroscience 1997;79: 1089-109.
Takakusaki K, Shiroyama T, Yamamoto T, Kitai ST. Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling. J Comp Neurol 1996;371:345-61.
Takakusaki K, Oohinata-Sugimoto J, Saitoh K, Habaguchi T. Role of basal ganglia-brainstem systems in the control of postural muscle tone and locomotion. Progress in Brain Research 2004;143:231-7.
Lavoie B, Parent A. Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 1994;344:210-31.
Lavoie B, Parent A. Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 1994;344: 190-209.
Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E; Peppe A; Stefani A. Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 2005;16(17):1877-81.
Pahapill PA, Lozano AM. The pedunculopontine nucleus and Parkinson’s disease. Brain 2000; Vol. 123,(9):1767-83.
Rodriguez MC, Obeso JA, Olanow CW. Subthalamic nucleusmediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann Neurol 1998;44(3 Suppl 1):S175-88.
Futami T. Takakusaki K. Kitai ST. Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neuroscience Research 1995:21(4):331-42.
Lavoie B, Parent A. Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 1994; 344: 232-41.
Hirsch E, Graybienl AM, Duyckaerts C, Javoy-Agid F. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Neurobiology 1987;84:5976-80.
Jellinger K The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosur Psychi 1988;51(4):540-3.
Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL.The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 1989;26(1):41-6.
Nandi D,. Aziz TZ, Giladi N, Winter J, Stein JF. Reversal of akinesia in experimental parkinsonism by GABA antagonist microinjections in the pedunculopontine nucleus. Brain 2002;125: 2418-30.
Jenkinson N, Nandi D, Miall R. Chris, Stein JF,Aziz TZ. Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. Neuroreport 2004;15(17): 2621-4.
Plaha, Puneet; Gill, Steven S. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 2005;28:16(17):1883-7.
Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 2007;130(Pt 6):1596-607.
Tinetti ME. Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 1986;34(2):119-26.
Nandi D, Liu X, Winter JL, Aziz TZ, Stein JF. Deep brain stimulation of the pedunculopontine region in the normal non-human primate. J Clin Neurosc 2002;9(2):170-4.
Allert, N. Volkmann, J. Dotse, S. Hefter, H. Sturm, V. Freund, H J. Effects of bilateral pallidal or subthalamic stimulation on gait in advanced Parkinson’s disease. Movement Disorders 2001;16(6):1076-85.
Munro-Davies L E, Winter J, Aziz T Z, Stein J F. The role of the pedunculopontine region in basal-ganglia mechanisms of akinesia. Experimental Brain Research 1999;129(4):511-7.
Jenkinson N, Nandi D, Aziz TZ, Stein JF. Pedunculopontine nucleus: a new target for deep brain stimulation for akinesia. Neuroreport 2005;28;16(17):1875-6.
Shink E, Sidibé M, Smith Y. Efferent connections of the internal globus pallidus in the squirrel monkey: II. Topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J Comp Neurol 1997;382:348-63.