2011, Number 2
<< Back
Rev Mex Patol Clin Med Lab 2011; 58 (2)
Aldose reductase and protein kinase C in the chronic complications of diabetes mellitus
Cruz HJ, Licea PME, Hernández GP, Abraham MEA, Yanes QM
Language: Spanish
References: 60
Page: 102-107
PDF size: 260.70 Kb.
ABSTRACT
A review on the involvement of activation of aldose reductase-complex protein kinase C in the development of diabetes mellitus chronic complications. It was stated that this phenomenon, which manifests itself in the presence of chronic hyperglycemia, is one of the fundamental pathophysiological elements determining the emergence of micro and macro vascular complications in diabetic subjects, especially where evolution time of metabolic disease is moderate or long.
REFERENCES
Roy S, Trudeau K, Roy S, Behl Y, Dhar S, Chronopoulos A. New insights into hyperglycemia-induced molecular changes in microvascular cells. J Dental Research 2010; 89 (2): 116-127.
Ceriello A. La «memoria metabólica» inducida por la hiperglucemia: el nuevo reto en la prevención de la enfermedad cardiovascular en la diabetes. Rev Esp Cardiol 2008; 8 (supl C): 12-18.
Flores E, Gutiérrez MF, Velázquez A. Complicaciones crónicas y factores asociados en diabéticos tipo 2. Salus 2007; 11 (1): 28-37.
Spiro RG. Role of insulin in two pathways of glucosa metabolism: in vivo glucosamine and glycogen synthesis. Ann N Y Acad Sci 1959; 82: 366-74.
King GL, Kunisaki M, Nishio Y, Inogushi T, Shiba T, Xia P. Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes 1996; 45: S105-S108.
Triana ME. La hiperglicemia y sus efectos tóxicos. Un concepto patogénico para la micro y macroangiopatía diabética. Rev Cub Angiol Cir Vasc 2001; 2 (2): 131-141.
Castro M, Rodríguez L. El endotelio: una encrucijada en las complicaciones vasculares de la diabetes en el anciano. Angiología 2006; 58 (1): 1-9.
Díaz M, Baiza LA, Ibáñez MA, Pascoe D, Guzmán AM, Kumate J. Aspectos moleculares del daño tisular inducido por la hiperglucemia crónica. Gac Med Mex 2004; 140 (4): 437-447.
Rosado J, Mendoza VM. Mini-revisión: inflamación crónica y estrés oxidativo en la diabetes mellitus. Bioquimia 2007; 32 (2): 58-69.
Chung SS, Cheng SK. Genetic analysis of aldose reductase in diabetic complications. Curr Med Chem 2003; 10 (15): 1375-87.
Hyndman D, Bauman DR, Heredia VV, Penning TM. The aldo-keto reductase superfamily homepage. Chen Biol Interact 2003; 143-144: 621-631.
Pilotti R, Jadzinsky M. Prevención de microangiopatía diabética. Rev ALAD 2003; 11 (2): 49-61.
Díaz D. Hiperglicemia y estrés oxidativo en el paciente diabético. Rev Cub Invest Biomed 2006; 25 (3). Disponible en: http: //www.sld.cu/galerias/pdf/sitios/diabetes/hiperglucemia_y_estres_oxidativo_ en_el_paciente_diabetico.pdf
Sánchez M. Integración de un paradigma: mecanismos biomoleculares y patogénicos, precursores de las complicaciones de la diabetes. Diabetes al Día. 2004; 2 (1). Disponible en: http: //www.encolombia.com/medicina/academedicina/academ27168conmemoraciones5. htm
Chung SS, Chung SK. Aldose reductase in diabetic microvascular complications. Curr Drug Targets. 2005; 6 (4): 475-486.
Chung SS, Ho EC, Lam KS, Chung SK. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol. 2003; 14 (suppl 3): S233-S236.
Chang Q, Harter TM, Rikimaru LT, Petrash JM. Aldo-keto reductases as modulators of stress response. Chem Biol Interact 2003; 144: 325-332.
Roy S, Trudeau K, Roy S, Behl Y, Dhar S, Chronopoulos A. New insights into hyperglycemia-induced molecular changes in microvascular cells. J Dental Research. 2010; 89 (2): 116-127.
Miguel PE, Bahr AP, Niño S. Mecanismos moleculares del daño microvascular de la diabetes mellitus; Correo Científico Méd Holguín. 2005; 9 (3): Disponible en: http: //www.cocmed.sld.cu/no93/n93rev1.htm
Inoguchi T, Tsubouchi H, Etoh T, Kakimoto M, Sonta T, Utsumi H et al. A possible target of antioxidative therapy for diabetic vascular complications-vascular NAD (P) H oxidase. Curr Med Chem 2003; 10 (17): 1759-1764.
Ramana KV, Chandra D, Srivastava S, Bhatnagar A, Srivastava SK. Aldose reductase mediates the mitogenic signals of cytokines. Chem Biol Interact 2003; 143-144: 587-596.
Suzen S, Buyukbingol E. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr Med Chem 2003; 10 (15): 1329-1352.
Sakai M, Oimomi M, Kasuga M. Experimental studies on the role of fructose in the development of diabetic complications. Kobe J Med Sci. 2002; 48 (5-6): 125-36.
Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J 1998; 332: 281-292.
Pricci F, Leto G, Amadio L, Jacobini C, Cordone S, Catalano S et al. Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radic Biol Med 2003; 35 (6): 683-694.
Cosentino F, Eto M, De Paolis P, Van Der Loo B, Bachschmid M, Ullrich V et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation 2003; 107 (7): 1017-1023.
Fanatsu H, Yamashita H. Pathophysiology of diabetic retinopathy. Drug News Perspect 2002; 15 (10): 633-639.
Ha H, Lee HB. Oxidative stress in diabetic nephropathy: basic and clinical information. Curr Diab Rep 2001; 1 (3): 282-287.
Kikkawa R, Koya D, Haneda M. Progression of diabetic nephropathy. Am J Kidney Dis 2003; 41 (3 suppl 1): S19-21.
Lee HB, Yu MR, Yang Y, Jiang Z, Ha H. Reactive oxygen species-regulated signalling pathways in diabetic nephropathy. J Am Soc Nephrol 2003; 14 (8 suppl 3): S241-245.
Ruderman NB, Cacicedo JM, Itani S, Yagihashi N, Saha AK, Ye JM et al. Malonyl-CoA and AMP-activated protein kinase (AMPK): possible links between insulin resistance in muscle and early endothelial cell damage in diabetes. Biochem Soc Trans 2003; 31 (Pt 1): 202-206.
Pérez F. Epidemiología y fisiopatología de la diabetes mellitus tipo 2. Rev Med Clin Condes 2009; 20 (5): 565-571.
Al-Dallen SM. Chávez T, Martínez G, Ferreira E, León OS. El equilibrio redox en la diabetes y sus complicaciones. Acta Farm Bonaerense 2004; 23 (2): 231-242.
Domínguez M. Fisiopatología de la microangiopatía diabética. Rev ALAD 2004; 12 (2): 55-74.
Olmos P, Araya A, González C, Laso P, Irribarra V, Rubio L. Fisiopatología de la retinopatía y neuropatía diabéticas. Rev Med Chile 2009; 137 (10): 1375-1384.
Curtis TM, Scholfield CN. The role of lipids and protein kinase Cs in the pathogenesis of diabetic retinopathy. Diabetes Metab Res Rev 2004; 20 (1): 28-43.
Abdel MA, Fahmy IA, Elsergani T. Serum and vitreous levels of vascular cell adhesion molecule and vascular endothelial growth factor in patients with diabetic retinopathy. Res J Medicine Med Sci 2008; 3 (2): 100-104.
Behl Y, Krothapalli P, Desta T, Di Piazza, Roy S, Graves DT. Diabetes-enhanced tumor necrosis of factor-production promotes apoptosis and the loss of retinal microvasculature cells in type 1 and type 2 models of diabetes. Am J Pathol 2008; 172: 1411-1418.
Lima V, Ríos LC. Opacidad de cristalino en diabéticos. Prevalencia y asociación con deficiencia visual y retinopatía. Cir Ciruj 2004; 72 (3): 171-175.
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010; 376 (9735): 124-136.
Iglesias MC, Chen S, Ziyadeh FN, Pancorbo MA. Patogénesis de la nefropatía diabética. Ciencia al Día Internacional. 2003; 1 (5): Disponible en: http: //www.ciencia.cl/CienciaAlDia/volumen5/numero1/articulos/Art1/CADi_v5_n1_Art1.pdf
Benito A, Ucero AC, Santamaría B, Lorz C, Kretzler M, Rastaldi MP et al. La transcriptómica ilustra nuevas vías letales en la nefropatía diabética. Nefrología 2009; 29 (1): 13-19.
Balakumar P, Arora MK, Reddy J, Anand-Srivastava M. Pathophysiology of diabetic nephropathy: involvement of multifaceted signalling mechanism. J Cardiol Pharmacol 2009; 54 (2): 129-138.
Betancourt JA, Covarruvias A, Guevara U. Mecanismos generadores y consideraciones terapéuticas futuras de la polineuropatía diabética dolorosa. Rev Mex Anestesiol 2008; 31 (1): 28-36.
Negi G, Kumar A, Sharma SS. Oxidative stress in the pathophysiology of diabetic neuropathy: mechanisms to management. CRIPS 2008; 9 (4): 62-68.
Oates PJ. Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets 2008; 9 (1): 14-36.
Licea ME. Inhibidores de la aldosa-reductasa en el tratamiento de la neuropatía diabética. Rev Cub Endocrinol 1995; 6 (1). Disponible en: http: //bvs.sld.cu/revistas/end/vol6_1_95/end08195.htm
Obrosova IG, Van Huysen C, Fathallah L, Cao XC, Greene DA, Stevens MJ. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J 2002; 16: 123-125.
Jadzinsky M, Ruiz M, Pagano MA, Fuente G, Márquez N, Bertorello M et al. Neuropatía diabética periférica. Utilización del Tolrestat para su tratamiento. Rev Soc Argent Diabetes 1995; 29 (1): 19-28.
Frati AC, Ariza CR. Inhibidores de la aldosa reductasa: experiencia clínica en neuropatía diabética. Rev Med IMSS 1994; 32 (3): 223-229.
Curba-Vaz JG, Mota CC, Leite EC, Abre JR, Ruias MA. Effect of sorbinil on blood-retinal barrier in early diabetic retinopathy. Diabetes 1986; 35: 574-579.
Yadav UCS, Ighani-Hosseinabad F, Van Kuijk FJGM, Srivastava SK, Ramana KV. Prevention of posterior capsular opacification through aldose reductase inhibition. Invest Ophthalmol Vis Sci 2009; 50 (2): 752-759.
Mauer SM, Stteffes MW, Azar S, Brown DM. Effects of sorbinil on glomerular structure and function in long-term diabetic rats. Diabetes 1989; 38: 839-844.
Kikkawa R. Chronic complications in diabetes mellitus. Br J Nutr 2000; 84 (suppl 2): S183-185.
Hink U, Tsilimingas N, Wendt M, Munzel T. Mechanism underlying endothelial dysfunction in diabetes mellitus: therapeutic implications. Treat Endocrinol 2003; 2 (5): 293-304.
Shore AC. The microvasculature in type 1 diabetes. Semin Vasc Med 2002; 2 (1): 9-20.
Bastarrachea RA, Montero JC, Saavedra V, Cerda R, Machado A, Comuzzie AG. Objetivos moleculares para diseñar nuevos fármacos para el tratamiento de la diabetes tipo 2 y la obesidad. Rev Med Chile 2008; 136 (1): 107-117.