2008, Number 1
<< Back Next >>
Rev Med UV 2008; 8 (1)
Evaluation of the Potential of Bayesian Networks on the Classification of Medical Data
Barrientos MRE, Cruz RN, Acosta MHG, Rabatte SI, Pavón LP, Gogeascoechea TMC, Blázquez MMSL
Language: Spanish
References: 8
Page: 33-37
PDF size: 482.50 Kb.
ABSTRACT
In this paper, we present the evaluation of Bayesian Networks on the classification of medical data. Their qualitative and quantitative nature permits representing the probabilistic relationships among variables as well as carrying out inferences such as prediction, diagnosis and decision-making. The medical area has used them for analysis and processing of data. Here, we evaluate the performance of Bayesian Networks on medical databases related to diseases such as Breast Cancer, Tumors, Diabetes and Hepatitis. In order to carry out such a task, we tested different Bayesian Network classifiers so that we can determine whether Bayesian Networks are a powerful and reliable tool for diagnosis and decision-making in this area.
REFERENCES
Heckerman D., Geiger D. and Chickering, D. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning 20, 1995; 197-243.
Jiménez-Andrade JL, BayesN: Un Algoritmo para Aprender Redes Bayesianas Clasificadoras a partir de datos. Tesis de Maestría en Inteligencia Artificial. Xalapa, Ver.: Facultad de Física e Inteligencia Artificial, U.V., 2003; 1-10.
Witten I. and Frank E., Data Mining: Practical Machine Learning Tools and Techniques. 2da. Edición Elsevier 2005.
Cruz-Ramírez N, Acosta-Mesa HG, Barrientos- Martínez RE and Nava-Fernández LA. How Good are Bayesian Information Criterion and the Minimun Description Lenght Principle for Model Selection? A Bayesian Networks Analysis. Advances in Artificial Intelligence. Vol. 4293, 2006; 494-504.
Pagina Web del repositorio de datos de la Universidad de California, http://kdd.ics.uci.edu/.
Gutierrez-Fragoso K, Análisis del comportamiento de MDL en el contexto del aprendizaje de la estructura de Redes Bayesianas a partir de datos. Tesis de Maestría en Inteligencia Artificial. Xalapa, Ver.: Facultad de Física e Inteligencia Artificial, U.V., 2007.
Cruz-Ramírez N, Acosta-Mesa HG, Carrillo-Calvet H, Nava-Fernández LA and Barrientos-Martínez RE. Diagnosis of Breast Cancer using Bayesian Networks: A case study. Computers in Biology and Medicine. Vol. 37, 2007; 1553-1564.
Pérez A, Larrañaga P and Inza I. Modelos gráficos probabilísticos para la clasificación supervisada empleando la estimación basada en kernels Gaussianos esféricos. III Taller Nacional de Minería de Datos y Aprendizaje. 2005; 125-134.