2009, Number 2
<< Back Next >>
Patol Rev Latinoam 2009; 47 (2)
Bone biopsy histomorphometry previous to marking and processed without decalcifying
Velásquez FFH
Language: Spanish
References: 37
Page: 108-117
PDF size: 468.08 Kb.
ABSTRACT
The histomorphometric bone biopsy study obtained previous double tetracycline labeled, today is the “golden key” for the study of the mineral metabolic bone diseases. The transiliac bone biopsy is a safe proceeding. In the biopsy we analyzed the modeling and remodeling bone activity, both processes are performed by the same cells, but differ in the way that they are arranged. The main effect of modeling is to lead to changes in bone shape size and mass, whereas remodeling is to renew bone due to the few data on the modeling process, the following discussion will be focuses on remodeling. The bone remodeling is located mainly in the trabecular bone through a basic multicellular unit (BRU), which its main action consists of successive cycles of bone resorption and formation on the same trabecular surface. The BRU number is constant, its activity is asynchronous, the amount of bone removed is replaced (remodeling balance), the mineralizing surface is homogeneous and its individual time activity is constant. Any alteration of these qualities, leading to metabolic bone disease. Example: If the BRU increased in number, if their time of activity shortens and their mineralization surface increases, it means that there is a high remodeling bone disease. On the other hand, if the number of BRU diminished, if its time of activity enlarges and if its mineralizing surface is scanty, it showes the image of a low remodeling bone disease. The histomorphometric parameters are classified as structural parameters (amount of bone and size), resorption parameters (percentage osteoclasts, eroded surface and peritrabecular fibrosis), static formation parameters (percentage osteoblast, osteoid surface and osteoid thickness) and dynamic bone formation parameters, that show information about
in vivo bone cell function (mineralizing surface, mineral apposition rate and others derived from these primary measures). We must take into account that the remodeling activity changes markedly with aging. We had few information about the metals bone levels; the bone biopsy allows us to know biochemical metals levels. Metabolic bone biopsy is indicated to establish specific diagnosis to prescribe treatments and some times to dilucidate prognosis. It is recommended to performed bone metabolic biopsy in renal osteodystrophies, osteogenesis imperfecta, idiopathic juvenile osteoporosis, polyostotic fibrous dysplasia, vitamin D dependent rickets, hypophosphatemic syndromes, chronic gastrointestinal conditions with bone disease, biliary atresia, primary hyperparathyroidism, pathological fractures, before any organ transplantation, in therapeutic protocols and toxicity or depletion of trace elements.
REFERENCES
Frost HM. Skeletal structural adaptations to mechanical usage. Redefining Wolgg’s law: the bone modeling problem. Anat Rec 1990;226:403-13.
Frost HM. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res 1969;3:211-37.
Merz WA, Schenk RK. Quantitative structural analysis of human cancellous bone. Acta Anat 1970;75:54-66.
Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, et al. Bone histomorphometry: standardization of nomenclature, symbol and units. J Bone Miner Res 1987;2:595-610.
Byers S, Moore AJ, Byard RW. Quantitative histomorphometric analysis of the human growth plate from birth to adolescence. Bone 2000;4:495-501.
Malluche HH, Monier-Faugere MC. The role of bone biopsy in the management of patients with renal osteodystrophy. J Am Soc Nephrol 1994;4(9):1631-42.
Rauch F. Watching bone cells at work: what we can see from bone biopsies. Pediatr Nephrol 2006;21:457-62.
Rauch F, Travers R, Norman M. Taylor A, et al. The bone formation defect in idiopathic juvenile osteoporosis is surfacespecific. Bone 2002;31:85-89.
Eriksen EF, Axelrod DW, Melsen F. Bone histomorphometry an official publication of the American Society for Bone and Mineral Research. New York: Raven Press, 1994.
Velásquez-Forero F. La biopsia ósea metabólica en el diagnóstico de las osteodistrofias renales. 2ª ed. Barcelona: Norma, 1997;pp:403-21.
Velásquez-Forero F. La biopsia ósea metabólica en pediatría.Bol Med Hosp Infant Mex Federico Gómez 2002;59:183- 98.
Baron R, Vigney A, Neff L. Processing of undecalcified bone specimens for bone histomorphometry. In: Recker RR, editor. Bone histomorphometry: techniques and interpretation. Boca Ratón: CRC Press, 1982;pp:13-36.
Goldner J. A modification of the Masson trichrome technique for routine laboratory purposes. Am J Pathol 1938;14:237-43.
Maloney NA, Ott SM, Alfrey AC. Histologic quantitation of aluminum in iliac bone from patients with renal failure. J Lab Clin Med 1982;99:202-16.
Perls M. Nachweis von eisenoxyd in gewissen pigment. Virchows Arch 1967;39:42.
Congo RED. Bennhold’s method for amyloid: laboratory methods in histotechnology, prepared by the Armed Forces Institute of Pathology Washington DC, 1967.
Basle MF, Fournier JG, Rozenblatt S, Rebel A, Bouteille M. Measles virus RNA detected in Paget’s disease bone tissue by in situ hybridization. J Gen Virol 1986;67:907-13.
Langub MC, Faugere MC, Malluche HH. Molecular bone morphometry. Pediatr Nephrol 2000;14:629-35.
Glorieux FH, Travers R, Taylor A. Normative data for iliac bone histomorphometry in growing children. Bone 2000;26:103-9.
Malluche HH, Wolfgang M, Sherman D. Quantitative bone histology in 84 normal American subjects; micromorphometric analysis and evaluation of variance in iliac bone. Calcif Tissue Int 1982;34:449-55.
Malluche HH, Faugere MC. Bone biopsies: histology and histomorphometry of bone. In: Avioli LV, Krane SM, editors. Philadelphia: WB Saunders Co., 1990;pp:283-328.
Sherrard DJ, Hercz G, Pei Y, Manuel A, et al. The spectrum of bone disease in end-stage renal failure an evolving disorder. Kidney Int 1993;43:436-42.
23 Velásquez-Forero F, Mondragón A, Herrero B, Peña JC. Adynamic bone lesion in renal transplant recipients with normal renal function. Nephrol Dial Transplant 1996;11(Suppl. 3):58-64.
Llach F, Velásquez-Forero. Secondary hyperparathyroidism in chronic renal failure: pathogenic and clinical aspects. Am J Kidney Dis 2001;38(5):S20-S33.
Parfitt AM, Qiu S, Rao DS. The mineralization index-A new approach to the histomorphometric appraisal of osteomalacia. Bone 2004;35:320-5.
Maloney NA, Ott SM, Miller N. Histological quantization of aluminum in iliac bone from patients with renal failure. J Lab Clin Med 1982;99:206-16.
Llach F, Felsenfeld AJ, Coleman MD. The natural course of dialysis osteomalacia. Kidney Int 1986;29:S74-S79.
Velásquez-Forero F, Terán PE, Valencia MP. Determinación histoquímica y espectrofotométrica de aluminio óseo en niños con osteodistrofia renal. Bol Med Hosp Infant Mex Federico Gómez 1998;55:551-62.
Navarro JA, Granadillo VA, Salgado O. Bone metal content in patients with chronic renal failure. Clin Chim Acta 1992;211:133-42.
Mallory FB, Wright JH. Pathological technique. 8th ed. Philadelphia: WB Saunders Co., 1924;p:207.
Velásquez-Forero F, Altamirano E, Trinidad RP. High frequency of iron bone deposits in a Mexican population with renal osteodystrophy. Nephrol Dial Transplant 1998;13:46- 50.
Sherrard DJ, Hercz G, Pei Y, Manuel A, et al. The spectrum of bone disease in end-stage renal failure an evolving disorder. Kidney Int 1993;43:436-42.
Malluche HH, Monier-Faugere MC. The role of bone biopsy in the management of patients with renal osteodystrophy. J Am Soc Nephrol 1994;4:1631-42.
Rauch F, Glorieux F. Osteogenesis imperfecta. Lancet 2004;363:1377-85.
Hruska KA, Saab G, Mathew S, Lund R. Renal osteodystrophy, phosphate homeostasis, and vascular calcification. Semin Dial 2007;20(4):309-15.
Jokihaara J, Pörsti IH, Kööbi P, Jolma PM, et al. Treatment of experimental renal osteodystrophy with pamidronate. Kidney Int 2008;74(3):319-27.
Katz IA, Epstein S. Perspectives postransplantation bone disease. J Bone Miner Res 1992;7(2):123-6.