2010, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2010; 13 (1)
Producción y características de cutinasas: Una alternativa interesante para biocatálisis a nivel industrial
Castro-Ochoa D, Peña-Montes C, Farrés A
Language: Spanish
References: 89
Page: 16-25
PDF size: 112.83 Kb.
ABSTRACT
Cutinases (EC 3.1.1.74) are enzymes that catalyze hydrolysis of lipidic polymer cutin, a structural component of plant cuticles. These enzymes display catalytic properties of esterases and lipases, as they can hydrolyze soluble esters and triacylglycerols, besides the reverse reactions of synthesis in a low-water environment. Such versatility has promoted their application in areas such as the food industry, detergents, biodiesel production, enzymatic degradation of toxic substances and synthetic polymers. Cutinases have been isolated mainly from fungi, being
Fusarium solani cutinase the most studied. Nevertheless, there has been an increasing interest in the search of biocatalysts with new interesting properties in the last years, thus cutinases have been isolated and studied from other sources. In this review the classification, structures, sources and production of these enzymes are discussed, and applications in emergent areas are detailed.
REFERENCES
Carvalho, C.M.L., Aires-Barros, M.R. & Cabral, J.M.S. Cutinase: from molecular level to bioprocess development. Biotechnol. Bioeng. 66(1), 17-34 (1999).
Kim, Y.h., Ahn, J.Y., Moon, S.H. & Lee, J. Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase. Chemosphere 60, 1349-1355 (2005).
Kim, H.Y., Lee, J., Ahn, J.Y., Gu, M.B. & Moon, S.H. Enhanced degradation of an endocrine-disrupting chemical, butyl benzyl phthalate, by Fusarium oxysporum f. sp. pisi cutinase. Appl. Environ. Microbiol. 68(9), 4684-4688 (2002).
Murphy, C.A., Cameron, J.A., Huang, S.J. & Vinopal, R.T. Fusarium polycaprolactone depolymerase is cutinase. Appl. Environ. Microbiol. 62(2), 456-460 (1996).
Badenes, S.M., Lemos, F. & Cabral, J.M.S. Transesterification of oil mixtures catalyzed by microencapsulated cutinase in reversed micelles. Biotechnol. Lett. 32, 399-403 (2010).
Martínez, C., de Geus, P., Lauwereys, M., Matthyssens, G. & Cambillau, C. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent Nature 356, 615, 618 (1992).
Araujo, R. et al. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6, 6 fibers. J. Biotechnol.128, 849-857 (2007).
Koschorreck, K., Liu, D., Kazenwadel, C., Schmid, R.D. & Hauer, B. Heterologous expression, characterization and site-directed mutagenesis of cutinase CUTAB1 from Alternaria brassicicola. Appl. Microbiol. Biotechnol. 87, 991-997 (2010).
Brissos, V., Eggert, T., Cabral, J.M. & Jaeger, K.E. Improving activity and stability of cutinase towards the anionic detergent AOT by complete saturation mutagenesis. Protein Eng. Des. Sel. 21, 387-393 (2008).
Taiz, L. & Zeiger, E. Plant physiology (Sinauer Associates, Inc, Sunderland, 2002).
Walton, T.J. & Kolattukudy, P.E. Determination of the structure of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry. Biochemistry 11(10), 1885-1897 (1972).
Farah Diba, A.B. et al. Induction and expression of cutinase activity during saprophytic growth of the fungal plant pathogen, Glomerella cingulata. Asia Pacific J. Biol. Biotechnol. 13(2), 63-69 (2005).
Lin, T.S. & Kolattukudy, P.E. Induction of a Biopolyester hydrolase (cutinase) by low levels of cutin monomers in Fusarium solani f. sp. pisi. J. Bacteriol. 133(2), 942-951 (1978).
Purdy, R.E. & Kolattukudy, P.E. Hydrolysis of plant cuticle by plant pathogens. Purification, aminoacid composition, and molecular weight of two isozymes of cutinase and a nonspecific esterase from Fusarium solani f. pisi. Biochemistry 14(13), 2824-2831 (1975).
Sebastian, J., Chandra, A.K., Kolattukudy, P.E. Discovery of a cutinase-producing Pseudomonas sp. cohabiting with an apparently nitrogen-fixing Corynebacterium sp. in the phyllosphere. J. Bacteriol. 169(1), 131-136 (1987).
Seo, H.S. et al. Pseudozyma jejuensis sp. nov., a novel cutinolytic ustilaginomycetous yeast species that is able to degrade plastic waste. FEMS Yeast Res. 7(6), 1035-1045 (2007).
Shayk, M. & Kolattukudy, P.E. Production of a novel extracellular cutinase by the pollen and the chemical composition and ultrastructure of the stigma cuticle of nasturtium (Tropaeolum majus). Plant Physiol. 60, 907-915 (1977).
Purdy, R.E. & Kolattukudy, P.E. Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi isolation and some properties of the enzyme. Arch. Biochem. Biophys. 159, 61-69 (1973).
Tanabe, K., Nishimura, S. & Kohmoto, K. Pathogenicity of cutinase and pectic enzymes-deficient mutants of Alternaria alternata japanese pear pathotype. Ann. Phytopathol. Soc. Jpn. 54, 552-555 (1988).
Dickman, M.B. & Patil, S.S. Cutinase deficient mutants of Colletotrichum gloesporioides are nonpathogenic to papaya fruit. Physiol. Mol. Plant Pathol. 28, 235-142 (1986).
Dickman, M.B., Podila, G.K. & Kolattukudy, P.E. Insertion of cutinase gene into a wound pathogen enables it to infect intact host. Nature 342, 446-448 (1989).
Köller, W., Parker, D.M. & Becker, C.M. Role of cutinase in the penetration of apple leaves by Venturia inaequalis. Phytopathology 81, 1375-1379 (1995).
Yao, C. & Köller, W. Diversity of cutinase from plant pathogenic fungi different cutinases are expressed during saprophytic and pathogenic stages of Alternaria brassicicola. Mol. Plant-Microbe Interact. 8, 122-130 (1995).
van Kan, J., van ‘t Klooster, J., Wagemakers, C., Dees, D. & van der Vlugt-Bergmans, C. Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and potato. Mol. Plant-Microbe Interact. 10(1), 30-38 (1997).
Bonnen, A.M. & Hammerschmidt, R.N. Role of cutinolytic enzymes in infection of cucumber by Colletotrichum lagenarium. Physiol. Mol. Plant Pathol. 35(6), 475-481 (1989).
http://www.chem.qmul.ac.uk/iubmb/enzyme/
Fojan, P., Jonson, P.H., Petersen, M.T.N. & Petersen, S.B. What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82, 1033-1041 (2000).
Peña-Montes, C., González, A., Castro-Ochoa, D. & Farrés, A. Purification and biochemical characterization of a broad substrate specificity thermostable alkaline protease from Aspergillus nidulans. Appl. Microbiol. Biotechnol. 78(4), 603-612 (2008).
Córdova, J., Ryan, J.D., Boonyaratanakornkit, B.B. & Clark, D.S. Esterase activity of bovine serum albumin up to 160 ºC: a new benchmark for biocatalysis. Enzyme Microb. Technol.42, 278-283 (2008).
Bornscheuer, W.T. Microbial carboxyl esterase: classification, properties and applications in biocatalysis. FEMS Microbiol. Rev. 26, 73-81 (2002).
Flipsen, J.A.C., van der Hijden, H.T.W.M. & Verheij, H.M. Action of cutinase at the triolein-water interface. Characterization of interfacial effects during lipid hydrolysis using the oil-drop densitometer as a tool to lipase kinetics. Chem. Phys. Lipids84, 105-115 (1996).
Gonçalves, A.M. et al. Stability studies of a recombinant cutinase immobilized to dextran and derivatized silica supports. Enzyme Microb. Technol. 24(1-2), 60-66 (1999).
Carvalho, C.L.M., Serralheiro, M.L.M, Cabral, J.M.S. & Aires-Barros, M.R. Application of factorial design to the study of transesterification reactions using cutinase in AOT-reversed micelles. Enzyme Microb. Technol. 21(2), 117-123 (1997).
Sharma, R., Chisti, Y. & Banerjee, U.C. Production, purification, characterization, and applications of lipases. Biotechnol Adv. 19(8), 627-662 (2001).
Pio, T.F. & Macedo, G.A. Cutinases: properties and industrial applications. Adv. App. Microbiol. 66, 77-95 (2009).
Regado, M.A. Flavour development via lipolysis of milkfats: changes in free fatty acid pool. Int. J. Food Sci. Technol.42, 961-968 (2007).
Langrand, G., Triantaphylides, C. & Barratti, J. Lipases catalized formation of flavour esters. Biotechnol. Lett. 10(8), 549-554 (1988).
Welsh, W.W., Murray, W.D. & Williams, R.E. Microbiological and enzymatic production of flavor and fragrance chemicals. Crit. Rev. Biotechnol. 9, 105-169 (1989).
Barros, D.P.C., Fonseca, L.P. & Cabral, J.M.S. Cutinase-catalized biosynthesis of short chain alkyl esters. J. Biotechnol.131,109-110 (2007).
Stamatis, H., Sereti, V. & Kolisis, F.N. Studies on the enzymatic synthesis of lipophilic derivatives of natural antioxidants. J. Am. Oil Chem. Soc. 76(12), 1505-1510 (1999).
Figueroa-Espinoza, M.C. & Villeneuve, P. Phenolic acids enzymatic lipophilization. J. Agric. Food Chem. 53, 2779-2787 (2005).
Peña-Montes, C. et al. Differences in biocatalytic behavior between two variants of StcI esterase from Aspergillus nidulans and its potential use in biocatalysis. J. Mol. Catal. B: Enzym. 61(3-4), 225-234 (2009).
Stamatis, H., Sereti, V. & Kolisis, F.N. Enzymatic synthesis of hydrophilic and hydrophobic derivatives of natural phenolic acids in organic media. J. Mol. Catal. B: Enzym. 11, 323-328 (2001).
Kolattukudy, P. et al. Cutinase cleaning compositions. US patent 4,981,611 (1991).
Flipsen, J.A.C., Appel, A.C.M., van der Hijden, H.T.W.M. & Verrips, C.T. Mechanism of removal of immobilized triacylglycerol by lipolytic enzymes in a sequential laundry wash process. Enzyme Microb. Technol. 23 (3-4), 274-280 (1998).
Rettich, F. Residual toxicity of wall-sprayed organophosphates, carbamates, and pyrethroids to mosquito. J. Hyg. Epidemiol. Microbiol. Immunol. 24, 110-117 (1980).
Indeerjeet, K., Mathur, R.P., Tandon, S.N. & Prem, D. Identification of metabolites of malathion in plant, water and soil by GC-MS. Biomed. Chromatogr. 11, 352-355 (1997).
Senanayake, N. & Karalliedde, L. Neurotoxic effects of organophosphorus insecticides. N. Engl. J. Med. 316, 761-763 (1987).
El-Dib, M.A., El-Elaimy, I.A., Kotb, A. & Elowa, S.H. Activation of in vivo metabolism of malathion in male Tilapia nilotica. Bull. Environ. Contam. Toxicol. 57, 667–674 (1996).
Kavlock, R. et al. NTP Center for the evaluation of risks to human reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di-it n-hexyl phthalate. Reprod. Toxicol. 16, 709–719 (2002).
Kim, Y.H. et al. Enhanced degradation and toxicity reduction of dihexyl phthalate by Fusarium oxysporum f. sp. pisi cutinase. J. App. Microbiol. 102, 221-228 (2007).
Kim, H.Y., Lee, J. & Moon, S.H. Degradation of an endocrine disrupting chemical, DEHP (di-2-ethylhexyl)-pfthalate), by Fusarium oxysporum f. sp. pisi cutinase. Appl. Microbiol. Biotechnol. 63(1), 75-80 (2003).
Sung, H.H., Kao, W.Y. & Su, Y.J. Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, Macrobrachium rosenbergii. Aquat. Toxicol. 64, 25–37 (2003).
Ahn, J.Y., Kim, Y.H., Min, J. & Lee, J. Accelerated degradation of dipentyl phthalate by Fusarium oxysporum f. sp. pisi cutinase and toxicity evaluation of its degradation products using bioluminescent bacteria. Curr. Microbiol. 52(5), 340-344 (2006).
Kim, H.Y., Min, J., Bae, K.D., Gu, M.B. & Lee, J. Biodegradation of dipropyl phthalate and toxicity of its degradation products: a comparison of Fusarium oxysporum f. sp. pisi cutinase and Candida cylindracea esterase. Arch. Microbiol. 184(1), 25-31 (2005).
Huang, S.J. Polymer waste management-biodegradation, incineration, and recycling. J. Macromol. Sci. Pure A 32, 593-597 (1995).
Maeda, H. et al. Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl. Microbiol. Biotechnol. 67, 778-788 (2005).
Masaki, K., Kamini, N.R., Ikeda, H. & Iefuji, H. Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and others biodegradable plastics. Appl. Environ. Microbiol. 71(11), 7548-7550 (2005).
Vasudevan, P.T. & Briggs, M. Biodiesel production-current state of the art and challenges. J. Ind. Microbiol. Biotechnol.35, 421-430 (2008).
Jeong, G-T. & Park, D-T. Lipase-catalyzed transesterification of rapeseed oil for biodiesel production with tert-butanol. Appl. Biochem. Biotechnol. 148,131-139 (2008).
Cambou, B. & Klibanov, A. Preparative production of optically active esters and alcohols using esterase-catalyzed stereospecific transesterification in organic media. J. Am. Chem. Soc. 106 (9), 2687-2692 (1984).
Ohnishi, K., Toida, J., Nakazawa, H. & Sekiguchi, J. Genome structure and nucleotide sequence of lipolytic enzyme gene of Aspergillus oryzae. FEMS Microbiol. Lett. 126, 145-150 (1995).
Rubio, M.B., Cardoza, R.E., Hermosa, R., Gutiérrez, S. & Monte, E. Cloning and characterization of the Thcut1gene encoding a cutinase of Trichoderma harzianum T34. Curr. Genet. 54, 301-312 (2008).
Macedo, G. & Fraga, L. Production of cutinase by Fusarium oxysporum in solid-state fermentation using agro-industrial residues. J. Biotechnol. 131(2), S212 (2007).
Fett, W.F., Wijey, C., Moreau, R.A. & Osman, S.F. Production of cutinase by Thermonospora fusca ATCC 27730. J. Appl. Microbiol. 86, 561-568 (1999).
Rispoli, F.J. & Shanh, V. Mixture design as a first step for optimization of fermentation medium for cutinase production from Colletotrichum lindemuthianum. J. Ind. Microbiol. Biotechnol. 34, 349-355 (2007).
McQueen, D.A.R. & Schottel, J.L. Purification and characterization of a novel Extracellular esterase from pathogenic Streptomyces scabies that is inducible by zinc. J. Bacteriol. 169(5), 1967-1971 (1987).
Fett, W.F., Gerard, H.C., Moreau, R.A., Osman, S.F. & Jones, L.E. Screening of nonfilamentous bacteria for production of cutindegrading enzymes. App. Environ. Microbiol. 58(7), 2123-2130 (1992).
Du, G.C. Zhang, S.L., Hua, Z.Z., Zhu, Y. & Chen, J. Enhanced cutinase production with Termobifida fusca by two-stage pH control strategy. Biotechnol. J. 133, 942-951 (2007).
van der Vlugt-Bergmans, C.J.B., Wagemakers, C.A.M. & van Kan, J.A.L. Cloning and expression of the Cutinase A gene of Botrytis cinerea. Mol. Plant-Microbe Interact. 10(1), 21-29 (1997).
Fett, W.F., Wijey, C., Moreau , R.A. & Osman, S.F. Production of cutinolytic esterase by filamentous bacteria. Lett. Appl. Microbiol. 31, 25-29 (2000).
Fan, C-Y. & Köller, W. Diversity of cutinases from plant pathogenic fungi:diferential and sequential expression if cutinolytic esterase by Alternaria brassicicola. FEMS Microbiol. Lett. 158, 33-38 (1998).
Hawthorne, B.T., Rees-George, J. & Crowhurst, R.N. Induction of cutinolytic esterase activity during saprophytic growth of cucurbit pathogens, Fusarium solani f. sp. cucurbitae races one and two (Nectria haematococca MPI and MPV, respectively). FEMS Microbiol. Lett. 194, 135-141 (2001).
Pio, T.F. & Macedo, G. A. Optimizing the production of cutinase by Fusarium oxysporum using response surface methodology. Enzyme Microb. Technol. 41, 613-619 (2007).
Rispoli, F. & Shanh, V. Optimization of the media ingredients for cutinase production from Colletotrichum lindemuthianum using mixture design experiments. Biotechnol. Prog. 24, 648-654 (2008).
Griswold, K.E., Mahmood, N.A., Iverson, B.L. & Georgiou, G. Effects of codon usage versus putative 5´-mRNA structure on the expression of Fusarium solani cutinase in the Escherichia coli cytoplasm. Protein Exp. Purif. 27, 134-142 (2003).
Calado, C.R., Almeida, C., Cabral, J.M. & Fonseca, L.P. Optimisation of culture conditions and characterization of cutinase produced by recombinant Saccharomyces cerevisiae. Enzyme Microb. Technol. 31, 161-170 (2002).
Nyon, M.P. et al. Catalysis by Glomerella cingulata cutinase requires conformational cycling between the active and inactive states of its catalytic triad. J Mol Biol 385, 226, 235 (2009).
Kodama, et al. Crystal structure and enhanced activity of a cutinaselike enzyme from Cryptococcus sp. strain S-2. Proteins 77, 710-717 (2009).
Liu, et al. Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J. Am. Chem. Soc. 131(43), 15711-15716 (2009).
Longhi, S., Czjzek, M., Lamzin, V., Nicolas, A. & Cambillau, C. Atomic Resolution (1.0 Å) crystal structure of Fusarium solani cutinase: stereochemical analysis. J. Mol. Biol.268, 779-799 (1997).
Ollis, D.L. et al. The a/b hydrolase fold. Protein Eng. 5(3), 197-211 (1992).
Nardini, M. & Dijkstra, B.W. a/b hydrolase fold enzymes: the family keeps growing. Curr. Opin. Struct. Biol. 9, 732,737 (1999).
Egmond, M.R. & de Vlieg, J. Fusarium solani cutinase. Biochimie 82, 1015-1021 (2000).
Longhi, S. & Cambillau, C. Structure-activity of cutinase, a small lipolytic enzyme. Biochim. Biophys. Acta1441, 185-196 (1999).
Kazlauskas, R.J. Elucidating structure-mechanism relationships in lipases: prospects for predicting and engineering catalytic properties. BIBTECH 12, 464-472 (1994).
Jaeger, J.E., Dijkstra, B.W. & Reetz, M.T. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53, 315-351 (1999).
Kraut, J. Serine proteases: structure and mechanisms of catalysis. Annu. Rev. Biochem. 46, 331-358 (1977).