2010, Number 1
<< Back Next >>
Arch Neurocien 2010; 15 (1)
Heme oxygenase: general aspects and importance in the central nervous system
Orozco-Ibarra M, Pedraza-Chaverrí J
Language: Spanish
References: 90
Page: 47-55
PDF size: 195.40 Kb.
ABSTRACT
Heme oxygenase (HO) is the rate-limiting enzyme that degrades heme and produces ferrous iron, carbon monoxide and biliverdin, the latter being converted to bilirubin through biliverdin reductase. In mammals, there are at least two functionally active HO isozymes, HO-1 is a 32-kDa protein that is inducible by numerous noxious stimuli and HO-2 is a constitutively synthesized 36-kDa protein that is abundant in brain and testis. In spite of both isozymes catalyze heme degradation by a similar mechanism, they exhibit significant differences in their molecular structure, biochemical characteristics, tissue distribution and gene regulation, which suggests that HO isoforms may have distinct cellular functions. Pos mortem studies on human brains have shown that HO-1 expression is involved with the pathology of neurodegenerative diseases such as Alzheimer, Parkinson and Huntington. On the other hand, HO-2 is the predominant isozyme of the nervous tissue and cerebral vessels and is evidence about its role in cell signaling, as intracellular sensor of oxygen, nitric oxide and carbon monoxide is increasing. Also, it has been found that HO 2 confers neuroprotection against cerebral ischemia. In addition, it is now known that the products of HO reaction have an important role in the cell. For example, bilirubin and biliverdin exhibit antioxidant activity, carbon monoxide is a signaling molecule and a vasodilator and Fe2+ induces ferritin expression. Therefore, additional studies about the HO function in the nervous system are needed.
REFERENCES
Orozco-Ibarra M, Pedraza-Chaverri J. Hemooxigenasa. Radicales libres y estrés oxidativo. Aplicaciones médicas. En Konigsberg M, editor, México: Manual Moderno, 2008.
Mahin MD. Heme oxygenase: clinical applications and functions. Florida:CRC Press Inc., 1992.
Maines MD, Gibbs PE. 30 some years of heme oxygenase: from a «molecular wrecking ball» to a «mesmerizing» trigger of cellular events. Biochem Biophys Res Commun 2005; 338:568-77.
Maines MD, Trakshel GM, Kurry RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase: only one molecular species of the enzyme is inducible. J Biol Chem 1986; 261:411-9.
Trakshel GM, Kurn RK, Maines MD. Purification andcharacterization of the major constitutive form of testicular heme oxygenase: the noninducible isoform. J Biol Chem 1986; 261:11131-7.
Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 1988;2:2557-68.
Raju VS, McCoubrey Jr WK, Maines MD. Regulation of hemeoxygenase-2 by glucocorticiods in neonatal rat brain: characterization of a functional glucocorticoid response element. Biochim Biophys Acta 1997; 1351:89-104.
Alam J, Cook JL. How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol 2007; 36:166-74.
Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett 2005; 157:175-88.
Camejo G, Halberg C, Manschik-Lundin A, Hurt-Camejo E, Rosengren B, Olsson H, et al. Hemin binding and oxidation of lipoproteins in serum: mechanisms and effect on the interaction of LDL with human macrophages. J Lipid Res 1998;39:755-66.
Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, Eaton JW, et al. Pro-oxidant and cytotoxic effects of circulating heme. Blood 2002; 100:879-87.
Suliman HB, Carraway MS, Velsor LW, Day BJ, Ghio AJ, Piantadosi CA. Rapid mtDNA deletion by oxidants in rat liver mitochondria after hemin exposure. Free Radic Biol Med 2002; 32:246-56.
Rahman Q, Mahmood N, Khan SG, Arif JM, Athar M. Mechanism of asbestos-mediated DNA damage: role of heme and heme proteins. Environ Health Perspect 1997;105:1109-12.
Braggins PE, Trakshel GM, Kutty RK, Maines MD. Characte-rization of two heme oxygenase isoforms in rat spleen: comparison with the hematin-induced and constitutive isoforms of the liver. Biochem Biophys Res Commun 1986; 141:528-33.
Bergeron M, Ferriero DM, Sharp FR. Developmental expression of heme oxygenase-1 (HSP32) in rat brain: an immunocytochemical study. Brain Res Dev Brain Res 1998; 105:181-94.
Colombrita C, Calabrese V, Stella AM, Mattei F, Alkon DL, Scapagnini G. Regional rat brain distribution of heme oxygenase- 1 and manganese superoxide dismutase mRNA:relevance of redox homeostasis in the aging processes. Exp Biol Med 2003; 228:517-24.
Parfenova H, Neff III RA, Alonso JS, Shlopov BV, Jamal CN, Sarkisova SA, et al. Cerebral vascular endothelial heme oxygenase: expression, localization, and activation by glutamate. Am J Physiol Cell Physiol 2001; 281:1954-63.
Guan L, Wen T, Zhang Y, Wang X, Zhao J.Induction of heme oxygenase-1 with hemin attenuates hippocampal injury in rats after acute carbon monoxide poisoning. Toxicology 2009; 262: 146-52.
Saleem S, Zhuang H, Biswal S, Christen Y, Doré S. Ginkgo biloba extract neuroprotective action is dependent on heme oxygenase 1 in ischemic reperfusion brain injury. Stroke 2008; 39:3389-96.
Hwang YP, Jeong HG. The coffee diterpene kahweol induces heme oxygenase-1 via the PI3K and p38/Nrf2 pathway to protect human dopaminergic neurons from 6-hydroxydopamine-derived oxidative stress. FEBS Lett 2008; 582:2655-62.
Egea J, Rosa AO, Cuadrado A, García AG, López MG. Nicotinic receptor activation by epibatidine induces heme oxygenase-1 and protects chromaffin cells against oxidative stress. J Neurochem 2007; 102:1842-52.
Satoh T, Baba M, Nakatsuka D, Ishikawa Y, Aburatani H, Furuta K, et al. Role of heme oxygenase-1 protein in the neuroprotective effects by cyclopentenone prostaglandin derivatives as a sustained phase of neuronal survival promoting mechanism under oxidative stress. Eur J Neurosci 2003; 17:2249-55.
Acquaviva R, Campisi A, Murabito P, Raciti G, Avola R, Mangiameli S, et al. Propofol attenuates peroxynitrite-mediated DNA damage and apoptosis in cultured astrocytes: an alternative protective mechanism. Anesthesiology 2004; 101:1363-71.
Moon MK, Choi BM, Oh BS, Pae HO, Kim JD, Oh H, et al. Catalposide protects neuro 2A cells from hydrogen peroxide-induced cytotoxicity via the expression of heme oxygenase-1. Toxicol Lett 2003; 145:46-54.
Exner M, Minar E, Wagner O, Schillinger M. The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic Biol Med 2004; 37:1097-104.
Mateo I, Infante J, Sánchez JP, García-Gorostiaga I, Rodríguez- Rodríguez E, Vázquez-Higuera JL, et al. Serum heme oxygenase- 1 levels are increased in Parkinson’s disease but not in Alzheimer’s disease. Acta Neurol Scand 2009. En prensa.
Funke C, Tomiuk J, Riess O, Berg D, Soehn AS. Genetic analysis of heme oxygenase-1 (HO-1) in German Parkinson’s disease patients. J Neural Transm 2009; 116:853-9.
Morgan L, Hawe E, Palmen J, Montgomery H, Humphries SE, Kitchen N. Polymorphism of the heme oxygenase-1 gene and cerebral aneurysms. Br J Neurosurg 2005; 19:317-21.
Takeda M, Kikuchi M, Ubalee R, Na-Bangchang K, Ruangweerayut R, Shibahara S, et al. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to cerebral malaria in Myanmar. Jpn J Infect Dis 2005; 58:268-71.
Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T.Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 1999; 103:129-35.
Kawashima A, Oda Y, Yachie A, Koizumi S, Akanishi N. Heme oxygenase–1 deficiency: the first autopsy case. Hum Pathol 2002; 33:125-30.
Poss K, Tonegawa S. Reduced stress defense in heme oxygenase- 1 deficient cells. Proc Natl Acad Sci USA 1997; 94:10925-30.
Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D. Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem 2009; 110:469-85.
Cuadrado A, Rojo AI. Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des 2008; 14:429-42.
Soares MP, Bach FH. Heme oxygenase-1: from biology to therapeutic potential. Trends Mol Med 2009; 15:50-8.
NG Abraham, A Kappas. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 2008; 60:79-127.
Orozco-Ibarra M, Chirino YI, Pedraza-Chaverri J. Papel de la hemooxigenasa-1 en las enfermedades neurodegenerativas. Rev Neurol 2006; 43:556-562.
Smith MA, Kutty RK, Richey PL, Yan SD, Stern D, Chader GJ, et al. Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 1994; 145:42-7.
Schipper H. Cisse S, Stopa E. Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Ann Neurol 1995; 37:758-68.
Pappolla MA, Chyan YJ, Omar RA, Hsiao K, Perry G, Smith MA, et al. Evidence of oxidative stress and in vivo neurotoxicity of betaamyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 1998; 152:871-7.
Song W, Su H, Song S, Paudel HK, Schipper HM. Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia. J Cell Physiol 2006; 206:655-63.
Takahashi M, Dore S, Ferris CD, Tomita T, Sawa A, Wolosker H, et al. Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer’s disease. Neuron 2000; 28:461-73.
Ishizuka K, Kimura T, Yoshitake J, Akaike T, Shono M, Takamatsu J, et al. Possible assessment for antioxidant capacity in Alzheimer’s disease by measuring lymphocyte heme oxygenase- 1 expression with real-time RT-PCR. Ann N Y Acad Sci 2002; 977:173-8.
Schipper HM, Liberman A, Stopa EG. Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol 1998; 150:60-8.
Castellani R, Smith MA, Richey PL, Perry G. Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res 1996; 737:195-200.
Chun HS, Gibson GE, DeGiorgio LA, Zhang H, Kidd VJ, Son JH. Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J Neurochem 2001; 76:1010-21.
Browne S, Ferrante R, Beal M. Oxidative stress in Huntington’s disease. Brain Pathol 1999; 9:147-163.
Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 1997; 69:2064-74.
Dwyer BE, Lu SY, Nishimura RN. Heme oxygenase in the experimental ALS mouse. Exp Neurol 1998; 150:206-12.
Stahnke T, Stadelmann C, Netzler A, Brück W, Richter-Landsberg C. Differential upregulation of heme oxygenase-1 (HSP32) in glial cells after oxidative stress and in demyelinating disorders. J Mol Neurosci 2007; 32:25-37.
Chen-Roetling J, Benvenisti-Zarom L, Regan RF. Cultured astrocytes from heme oxygenase-1 knockout mice are more vulnerable to heme-mediated oxidative injury. J Neurosci Res 2005; 82:802-10.
Panahian N, Yoshiura M, Maines MD. Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem 1999; 72:1187-1203.
Ahmad AS, Zhuang H, Dore S. Heme oxygenase-1 protects brain from acute excitotoxicity. Neurosci 2006; 141:1703-8.
Ku BM, Joo Y, Mun J, Roh GS, Kang SS, Cho GJ, et al. Heme oxygenase protects hippocampal neurons from ethanol-induced neurotoxicity. Neurosci Lett 2006; 405:168-71.
Chen K, Gunter K, Maines MD. Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. J Neurochem 2000; 75:304-313.
Orozco-Ibarra M, Estrada-Sánchez AM, Massieu L, Pedraza-Chaverrí J. Heme oxygenase-1 induction prevents neuronal damage triggered during mitochondrial inhibition: role of CO and bilirubin. Int J Biochem Cell Biol 2009; 41:1304-14.
Guzmán-Beltrán S, Espada S, Orozco-Ibarra M, Pedraza-ChaverriJ, Cuadrado A. Nordihydroguaiaretic acid activates the antioxidant pathway Nrf2/HO-1 and protects cerebellar granule neurons against oxidative stress. Neurosci Lett 2008; 447:167-71.
González-Reyes S, Orozco-Ibarra M, Guzmán-Beltrán S, Molina- Jijón E, Massieu L, Pedraza-Chaverri J. Neuroprotective role of heme-oxygenase 1 against iodoacetate-induced toxicity in rat cerebellar granule neurons: Role of bilirubin. Free Radic Res 2009; 43:214-23.
Sutherland BA, Rahman RM, Clarkson AN, Shaw OM, Nair SM, Appleton I. Cerebral heme oxygenase 1 and 2 spatial distribution is modulated following injury from hypoxia-ischemia and middle cerebral artery occlusion in rats. Neurosci Res 2009. En prensa.
Bidmon H, Emde B, Oermann E, Kubitz R, Witte OW, Zilles K. Heme oxygenase-1 (HSP-32) and heme oxygenase-2 induction in neurons and glial cells of cerebral regions and its relation to iron accumulation after focal cortical photothrombosis. Exp Neurol 2001; 168:1-22.
McCoubrey WK Jr, Ewing JF, Maines MD. Human heme oxygenase: characterization and expression of a full length cDNA and evidence suggesting the two HO-2 transcripts differ by choice of polyadenylation signal. Arch Biochem Biophys 1992; 295:13-20.
Sun Y, Rotenberg MO, Maines MD. Developmental expression of heme oxygenase isozymes in rat brain: Two HO-2 mRNAs are detected. J Biol Chem 1990; 265:8212-17.
Boehning D, Moon C, Sharma S, Hurt KJ, Hester LD, Ronnett GV, et al. Carbon monoxide neurotransmission activated by CK2 phosphorylation of heme oxygenase-2. Neuron 2003; 40:129-37.
McCoubrey WK Jr, Huang TJ, Maines MD. Heme oxygenase-2 is a hemoprotein and binds heme through heme regulatory motifs that are not involved in heme catalysis. J Biol Chem 1997; 272:12568-74.
Parfenova H, Leffler CW. Cerebroprotective functions of HO-2. Curr Pharm Des 2008; 14:443-53.
Doré S. Decreased activity of the antioxidant heme oxygenase enzyme: implications in ischemia and in Alzheimer’s disease. Free Radic Biol Med 2002; 32:1276-82.
Sodhi K, Inoue K, Gotlinger K, Canestraro M, Vanella L, Hyun Kim D, et al. EET agonist rescues the metabolic syndrome phenotype of HO-2 null mice. J Pharmacol Exp Ther 2009, en prensa.
Doré S, Sampei K, Goto S, Alkayed NJ, Guastella D, Blackshaw S, et al. Heme oxygenase-2 is neuroprotective in cerebral ischemia. Mol Med 1999; 5:656-63.
Chang EF, Wong RJ, Vreman H, Igarashi T, Galo E, Sharp FR, et al. Heme oxygenase-2 protects against lipid peroxidation – mediated cell loss and impaired motor recovery after traumatic brain injury. J Neurosci 2003; 23:3689-96.
Parfenova H, Basuroy S, Bhattacharya S, Tcheranova D, Qu Y, Raymond F. et al. Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: contributions of HO-1 and HO-2 to cytoprotection. Am J Physiol Cell Physiol 2006; 290:1399-410.
Basuroy S, Bhattacharya S, Tcheranova D, Qu Y, Regan RF, Lefler CW, et al. HO-2 provides endogenous protection against oxidative stress and apoptosis caused by TNF-{alpha} in cerebral vascular endothelial cells. Am J Physiol Cell Physiol 2006; 291:897-908.
Chirino YI, Orozco Ibarra M, Pedraza Chaverri J. Role of peroxynitrite anion in different diseases. Rev Invest Clin 2006; 58:350-8.
Hartsfield CL. Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal 2002; 4:301-7.
Ryter SW, Otterbein LE. Carbon monoxide in biology and medicine. Bioessays 2004; 26:270-80.
Sedlak TW, Snyder SH. Billirrubin benefits: celular protection by a biliverdin reductase antioxidante cycle. Pediatrics 2004; 113: 1776-82
Stocker R. Antioxidant activities of bile pigments. Antioxid Redox Signal 2004; 6:841-9.
Barañano DE, Wolosker H, Bae BI, Barrow RK, Snyder SH, Ferris CD. A mammalian iron ATPase induced by iron. J Biol Chem 2000; 275:15166-73.
Erdmann K, Grosser N, Schipporeit K, Schröder H. The ACE inhibitory dipeptide Met-Tyr diminishes free radical formation in human endothelial cells via induction of heme oxygenase-1 and ferritin. J Nutr 2006; 136:2148-52.
Balla J, Varcellotti GM, Jeney V, Yachie A, Varga Z, Eaton JW, et al. Heme, heme oxygenase and ferritin invascular endothelial cell injury. Mol Nutr Food 2005; 49:1030-43.
Grosser N, Oberle S, Berndt G, Erdmann K, Hemmerle A, Schroder H. Antioxidant action of L-alanine: heme oxygenase-1 and ferritin as possible mediators. Biochem Biophys Res Commun 2004; 314:351-5.
Kirby KA, Adin CA. Products of heme oxygenase and their potential therapeutic applications. Am J Physiol Renal Physiol 2006; 290:563-71.
Harder Y, Amon M, Schramm R, Rücker M, Scheuer C, Pittet B, et al. Ischemia-induced up-regulation of heme oxygenase-1 protects from apoptotic cell death and tissue necrosis. J Surg Res 2008; 150:293-303.
Ndisang JF, Tabien HE, Wang R. Carbon monoxide and hypertension. J Hypertens 2004; 22:1057-74.
Olson KR, Donald JA. Nervous control of circulation the role of gasotransmitters, NO, CO, and H2S. Acta Histochem 2009;111: 244-56.
Mancuso C, Pani G, Calabrese V. Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep 2006; 11:207-13.
Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 2004; 3:205-14.
Piantadosi CA, Tatro L, Zhang J. Hydroxyl radical production in the brain after CO hypoxia in rats. Free Radic Biol Med 1995; 18:603-9.
Kapitulnik J. Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties. Mol Pharmacol 2004; 66:773-9.
Morioka I, Wong RJ, Abate A, Vreman HJ, Contag CH, Stevenson DK. Systemic effects of orally-administered zinc and tin (IV) metalloporphyrins on heme oxygenase expression in mice. Pediatr Res 2006; 59:667-72.
Drummond GS, Kappas A. Sn-mesoporphyrin suppression of hyperbilirubinemia in EHBR/Eis rats, an animal model of Dubin- Johnson syndrome. Pharmacology 1998; 56:158-64.