2010, Number 1
<< Back Next >>
Alerg Asma Inmunol Pediatr 2010; 19 (1)
Role of the immune system in the pathogenesis of the infection caused by dengue virus
Pérez BY
Language: Spanish
References: 86
Page: 23-29
PDF size: 77.47 Kb.
ABSTRACT
Dengue virus (DV) infections are a serious cause of morbidity and mortality in most tropical and subtropical areas of the world. Dengue virus infection can be asymptomatic or causes two forms of illness, dengue fever (DF) and dengue hemorrhagic fever (DHF), which is the severe form of dengue illness and often fatal. In subsequent infection with a dengue virus of different serotype, severe disease is linked to high levels of antibody-enhanced viral replication early in illness which is followed by a cascade of memory T-cell activation, other cells of immune system and a production of inflammatory cytokines and other chemical mediators that cause an increase in vascular permeability. Advances in that field of immunology have shown that DHF/DSS pathogenesis is a complex, multifactorial process related with host and viral factors that influence disease severity.
REFERENCES
Kurane I. Dengue hemorrhagic fever with special emphasis on immunopathogenesis. Comp Immunol Microbiol Infect Dis. 2007 Sep;30(5-6):329-40. on “http://preview.ncbi.nlm. nih.gov/pubmed/17645944?itool=EntrezSystem2.PEntrez. Pubmed.Pubmed_ResultsPanel.Pubmed_RVDoc Sum&ordinalpos=5”
Halstead SB. Dengue. Lancet 2007; 370(9599): 1644-52.
Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 1998; 11: 480–96.
Burke DS, Monath TP. Flaviviruses. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia, USA: Lippincott Williams & Wilkins; 2001: 1043–125.
Castleberry JS, Mahon CR. Dengue fever in the Western Hemisphere. Clin Lab Sci 2003 Winter; 16(1): 34-8.
Lindenbach BD, Rice CM. Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia, USA: Lippincott Williams & Wilkins; 2001: 991–1041.
Lindenbach BD, Rice CM. Molecular biology of flaviviruses. Adv Virus Res 2003; 59: 23–61.
Monath TP, Tsai TF. Flaviviruses. In: Richman DD, Whitley RJ, Hayden FG, editors. Clinical Virology. Washington, DC: ASM Press; 2002: 1097–151.
Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature 2004; 427: 313-319.
Rey FA. Dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 2003; 100: 6986–6991.
Anderson R. Manipulation of cell surface macromolecules by flaviviruses. Adv Virus Res 2003; 59: 229–274.
Paes MV, Lenzi HL, Nogueira AC, Nuovo GJ, Pinhão AT, Mota EM, Basílio-de-Oliveira CA, Schatzmayr H, Barth OM, Alves AM. Hepatic damage associated with dengue-2 virus replication in liver cells of BALB/c mice. Lab Invest 2009; 89(10): 1140–51.
Arévalo MT, Simpson-Haidaris PJ, Kou Z, Schlesinger JJ, Jin X. Primary human endothelial cells support direct but not antibody-dependent enhancement of dengue viral infection. J Med Virol 2009; 81(3): 519–28.
Jessie K, Fong MY, Devi S, Lam SK, Wong KT. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 2004; 189: 1411–1418.
Wati S, Soo ML, Zilm P, Li P, Paton AW, Burrell CJ, Beard M, Carr JM. Dengue virus infection induces GRP78 which acts to chaperone viral antigen production. J Virol 2009 Sep 30. Epub 2009 Sep 30.
Hase T, Summers PL, Eckels KH. Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch Virol 1989; 104(1–2): 129-43.
Lee CJ, Lin HR, Liao CL, Lin YL. Cholesterol effectively blocks entry of flavivirus. J Virol 2008; 82(13): 6470–80.
Chen JP, Lu HL, Lai SL, Campanella GS, Sung JM, Lu MY et al. Dengue virus induces expression of CXC chemokine ligand 10/IFN-gamma-inducible protein 10, which competitively inhibits viral binding to cell surface heparan sulfate. J Immunol 2006; 177(5): 3185–92.
Lee E, Pavy M, Young N, Freeman C, Lobigs M. Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic flaviviruses. Antiviral Res 2006; 69(1): 31–8.
Prestwood TR, Prigozhin DM, Sharar KL, Zellweger RM, Shresta S. A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. J Virol 2008; 82(17): 8411–21.
Reyes-Del Valle J, Chávez-Salinas S, Medina F, Del Angel RM. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 2005; 79(8): 4557–67.
Kolli R, Khanam S, Jain M, Ganju L, Ram MS, Khanna N, Swaminathan S. A synthetic dengue virus antigen elicits enhanced antibody titers when linked to, but not mixed with,Mycobacterium tuberculosis HSP70 domain II. Vaccine 2006; 24(22): 4716–26.
Jindadamrongwech S, Thepparit C, Smith DR. Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 2004; 149(5): 915-27.
Limjindaporn T, Wongwiwat W, Noisakran S, Srisawat C, Netsawang J, Puttikhunt C et al. Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production. Biochem Biophys Res Commun 2009; 379(2): 196-200.
Chen YC, Wang SY, King CC. Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol 1999; 73(4): 2650–7.
Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 2003; 197(7): 823–9.
Kwan WH, Helt AM, Marañón C, Barbaroux JB, Hosmalin A, Harris E et al. Dendritic cell precursors are permissive to dengue virus and human immunodeficiency virus infection. J Virol 2005; 79(12): 7291–9.
Miller JL, de Wet BJ, Martínez-Pomares L et al. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 2008; 4: e17.
World Health Organization. Dengue haemorrhagic fever: diagnosis, treatment and control. Geneva: World Health Organization; 1997: 12–23.
Wilder-Smith A, Schwartz E. Dengue in travelers. N Engl J Med 2005; 353(9): 924–32.
Pandey BD, Igarashi A. Severity-related molecular differences among nineteen strains of dengue type 2 viruses. Microbiol Immunol 2000; 44(3): 179–88.
Anzai S, Fukuda M, Otsuka Y, Eshita Y. Nucleotide sequence and phylogenetic analyses of dengue type 2 virus isolated in the Dominican Republic. Virus Genes 2004; 29(2): 219–27.
Halstead SB. Antibodies determine virulence in dengue. Ann N Y Acad Sci 2009; 1171 Suppl 1: E48–56.
Álvarez M, Rodriguez-Roche R, Bernardo L, Vázquez S, Morier L, Gonzalez D et al. Dengue hemorrhagic Fever caused by sequential dengue 1-3 virus infections over a long time interval: Havana epidemic, 2001-2002. Am J Trop Med Hyg 2006; 75(6): 1113–7.
Guzmán MG, Kourí G, Valdés L, Bravo J, Vázquez S, Halstead SB. Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. Rev Panam Salud Publica 2002; 11(4): 223–7.
Guzmán MG, Kouri G, Bravo J, Soler M, Martínez E. Sequential infection as risk factor for dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) during the 1981 dengue hemorrhagic Cuban epidemic. Mem Inst Oswaldo Cruz 1991; 86(3): 367.
Ong A, Sandar M, Chen MI, Sin LY. Fatal dengue hemorrhagic fever in adults during a dengue epidemic in Singapore. Int J Infect Dis 2007; 11(3): 263–7.
Diamond MS, Edgil D, Roberts TG, Lu B, Harris E. Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 2000; 74(17): 7814–23.
Edgil D, Diamond MS, Holden KL, Paranjape SM, Harris E. Translation efficiency determines differences in cellular infection among dengue virus type 2 strains. Virology 2003; 317(2): 275–90.
Holmes EC. RNA virus genomics: a world of possibilities. J Clin Invest 2009; 119(9): 2488–95.
Shu PY, Su CL, Liao TL, Yang CF, Chang SF, Lin CC et al. Molecular characterization of dengue viruses imported into Taiwan during 2003-2007: geographic distribution and genotype shift. Am J Trop Med Hyg 2009; 80(6): 1039–46.
Koraka P, Williams MM, Djamiatun K, Setiati TE, van Batenburg FH, Stittelaar KJ et al. RNA secondary structures in the proximal 3’UTR of Indonesian Dengue 1 virus strains. Virus Res 2009; 142(1-2): 213-6. Epub 2009 Mar 13.
Pryor MJ, Carr JM, Hocking H, Davidson AD, Li P, Wright PJ. Replication of dengue virus type 2 in human monocyte-derived macrophages: comparisons of isolates and recombinant viruses with substitutions at amino acid 390 in the envelope glycoprotein. Am J Trop Med Hyg 2001; 65(5): 427-34.
Rabablert J, Wasi C, Kinney R, Kasisith J, Pitidhammabhorn D, Ubol S. Attenuating characteristics of DEN-2 PDK53 in flavivirus-naïve peripheral blood mononuclear cells. Vaccine 2007; 25(19): 3896–905.
Ubol S, Chareonsirisuthigul T, Kasisith J, Klungthong C. Clinical isolates of dengue virus with distinctive susceptibility to nitric oxide radical induce differential gene responses in THP-1 cells. Virology 2008; 376(2): 290–6.
Cummings DA, Schwartz IB, Billings L, Shaw LB, Burke DS. Dynamic effects of antibody-dependent enhancement on the fitness of viruses. Proc Natl Acad Sci USA 2005; 102(42): 15259–64.
Recker M, Blyuss KB, Simmons CP, Hien TT, Wills B, Farrar J, Gupta S. Immunological serotype interactions and their effect on the epidemiological pattern of dengue. Proc Biol Sci 2009; 276(1667): 2541–8. Epub 2009 Apr 15.
Morens DM. Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin Infect Dis 1994; 19(3): 500–12.
Boonnak K, Slike BM, Burgess TH, Mason RM, Wu SJ, Sun P et al. Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. J Virol 2008; 82(8): 3939–51.
Moi ML, Lim CK, Takasaki T, Kurane I. Involvement of the Fc{gamma} receptor IIA cytoplasmic domain in antibody dependent enhancement of dengue virus infection. J Gen Virol 2009; [Epub ahead of print].
Jin X. Cellular and molecular bases of antibody-denpending enhancement in human dengue pathogenesis. Future Virol 2008; 3(4): 343–61.
Klasse PJ, Sattentau QJ. Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol 2002; 83(Pt 9): 2091–108.
Pierson TC, Xu Q, Nelson S, Oliphant T, Nybakken GE, Fremont DH et al. The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 2007; 1(2): 135-45.
Rodrigo WW, Block OK, Lane C, Sukupolvi-Petty S, Goncalvez AP, Johnson S et al. Dengue virus neutralization is modulated by IgG antibody subclass and Fcgamma receptor subtype. Virology 2009; 394(2): 175-82. Epub 2009 Oct 14.
Goncalvez AP, Engle RE, St Claire M, Purcell RH, Lai CJ. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci USA 2007; 104(22): 9422–7.
Yamanaka A, Kosugi S, Konishi E. Infection-enhancing and -neutralizing activities of mouse monoclonal antibodies against dengue type 2 and 4 viruses are controlled by complement levels. J Virol 2008; 82(2): 927–37.
Lai CJ, Goncalvez AP, Men R, Wernly C, Donau O, Engle RE, Purcell RH. Epitope determinants of a chimpanzee dengue virus type 4 (DENV-4)-neutralizing antibody and protection against DENV-4 challenge in mice and rhesus monkeys by passively transferred humanized antibody. J Virol 2007; 81(23): 12766-74. Epub 2007 Sep 19.
van der Schaar HM, Wilschut JC, Smit JM. Role of antibodies in controlling dengue virus infection. Immunobiology 2009; [Epub ahead of print].
Rodrigo WW, Jin X, Blackley SD, Rose RC, Schlesinger JJ. Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signaling-incompetent human Fcgamma RIA (CD64) or FcgammaRIIA (CD32). J Virol 2006; 80(20): 10128–38.
Moi ML, Lim CK, Takasaki T, Kurane I. Involvement of the Fc{gamma} receptor IIA cytoplasmic domain in antibody dependent enhancement of dengue virus infection. J Gen Virol 2010 Jan;91(Pt 1):103-11.
Rothman AL. T lymphocyte responses to heterologous secondary dengue virus infections. Ann N Y Acad Sci 2009; 1171 Suppl 1: E36–41.
Basu A, Chaturvedi UC. Vascular endothelium: the battlefield of dengue viruses. FEMS Immunol Med Microbiol 2008; 53(3): 287–99.
Dong T, Moran E, Vinh Chau N, Simmons C, Luhn K, Peng Y et al. High pro-inflammatory cytokine secretion and loss of high avidity cross-reactive cytotoxic T-cells during the course of secondary dengue virus infection. PLoS One 2007; 2(12): e1192.
Imrie A, Meeks J, Gurary A, Sukhbataar M, Kitsutani P, Effler P, Zhao Z. Differential functional avidity of dengue virus-specific T-cell clones for variant peptides representing heterologous and previously encountered serotypes. J Virol 2007; 81(18): 10081-91. Epub 2007 Jul 11.
Beaumier CM, Mathew A, Bashyam HS, Rothman AL. Cross-reactive memory CD8(+) T cells alter the immune response to heterologous secondary dengue virus infections in mice in a sequence-specific manner. J Infect Dis 2008; 197(4): 608–17.
Mangada MM, Rothman AL. Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. J Immunol 2005; 175(4): 2676–83.
Beaumier CM, Rothman AL. Cross-reactive memory CD4+ T cells alter the CD8+ T-cell response to heterologous secondary dengue virus infections in mice in a sequence-specific manner. Viral Immunol 2009; 22(3): 215–9.
Leong AS, Wong KT, Leong TY, Tan PH, Wannakrairot P. The pathology of dengue hemorrhagic fever. Semin Diagn Pathol 2007; 24(4): 227–36.
Levy A, Valero N, Espina LM, Añez G, Arias J, Mosquera J. Increment of interleukin 6, tumour necrosis factor alpha, nitric oxide, C-reactive protein and apoptosis in dengue. Trans R Soc Trop Med Hyg 2009; [Epub ahead of print].
Yen YT, Chen HC, Lin YD, Shieh CC, Wu-Hsieh BA. Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol 2008; 82(24): 12312-24.
Vásquez-Ochoa M, García-Cordero J, Gutiérrez-Castañeda B, Santos-Argumedo L, Villegas-Sepúlveda N, Cedillo-Barrón L. A clinical isolate of dengue virus and its proteins induce apoptosis in HMEC-1 cells: a possible implication in pathogenesis. Arch Virol 2009; 154(6): 919–28.
Phuong HL, Thai KT, Nga TT, Giao PT, Hung le Q, Binh TQ et al. Detection of dengue nonstructural 1 (NS1) protein in Vietnamese patients with fever. Diagn Microbiol Infect Dis 2009; 63(4): 372–8.
Avirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S, Auethavornanan K et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis 2006; 193(8): 1078–88.
Chen MC, Lin CF, Lei HY, Lin SC, Liu HS, Yeh TM, et al. Deletion of the C-terminal region of dengue virus nonstructural protein 1 (NS1) abolishes anti-NS1-mediated platelet dysfunction and bleeding tendency. J Immunol 2009; 183(3): 1797–803.
Rawlinson SM, Pryor MJ, Wright PJ, Jans DA. CRM1-mediated nuclear export of dengue virus RNA polymerase NS5 modulates interleukin-8 induction and virus production. J Biol Chem 2009; 284(23): 15589–97.
Jaiyen Y, Masrinoul P, Kalayanarooj S, Pulmanausahakul R, Ubol S. Characteristics of dengue virus-infected peripheral blood mononuclear cell death that correlates with the severity of illness. Microbiol Immunol 2009; 53(8): 442–50.
Levy A, Valero N, Espina LM, Añez G, Arias J, Mosquera J. Increment of interleukin 6, tumour necrosis factor alpha, nitric oxide, C-reactive protein and apoptosis in dengue. Trans R Soc Trop Med Hyg 2010; 104(1): 16–23.
Valero N, Larreal Y, Espina LM, Reyes I, Maldonado M, Mosquera J. Elevated levels of interleukin-2 receptor and intercellular adhesion molecule 1 in sera from a venezuelan cohort of patients with dengue. Arch Virol 2008; 153(1): 199–203.
Priyadarshini D, Gadia RR, Tripathy A, Gurukumar KR, Bhagat A, Patwardhan S et al. Clinical findings and pro-inflammatory cytokines in dengue patients in Western India: a facility-based study. PLoS One 2010; 5(1): e8709.
Chen RF, Yang KD, Wang L, Liu JW, Chiu CC, Cheng JT. Different clinical and laboratory manifestations between dengue haemorrhagic fever and dengue fever with bleeding tendency. Trans R Soc Trop Med Hyg 2007; 101(11): 1106–13.
Lee YR, Liu MT, Lei HY, Liu CC, Wu JM, Tung YC, et al. MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells. J Gen Virol 2006; 87(Pt 12): 3623–30.
Rachman A, Rinaldi I. Coagulopathy in dengue infection and the role of interleukin-6. Acta Med Indones 2006; 38(2): 105–8.
Tsai YT, Chang SY, Lee CN, Kao CL. Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 2009; 11(4): 604–15.
Ho LJ, Hung LF, Weng CY, Wu WL, Chou P, Lin YL, et al. Dengue virus type 2 antagonizes IFN-alpha but not IFN-gamma antiviral effect via down-regulating Tyk2-STAT signaling in the human dendritic cell. J Immunol 2005; 174(12): 8163–72.
Mazzon M, Jones M, Davidson A, Chain B, Jacobs M. Dengue virus NS5 inhibits interferon-alpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation. J Infect Dis 2009; 200(8): 1261–70.
Nascimento EJ, Silva AM, Cordeiro MT, Brito CA, Gil LH, Braga-Neto U et al. Alternative complement pathway desregulation is correlated with dengue severity. PLoS One 2009; 4(8): e6782.