2010, Número 1
<< Anterior Siguiente >>
Alerg Asma Inmunol Pediatr 2010; 19 (1)
Papel del sistema inmune en la patogenia de la infección por el virus del dengue
Pérez BY
Idioma: Español
Referencias bibliográficas: 86
Paginas: 23-29
Archivo PDF: 77.47 Kb.
RESUMEN
La infección por el virus del dengue (DV) es una seria causa de morbilidad y mortalidad en la mayoría de las áreas tropicales y subtropicales del mundo. La infección puede ser asintomática o causar dos formas de la enfermedad, la fiebre del dengue (DF) o la fiebre hemorrágica del dengue (DHF), la cual es la forma más severa de la enfermedad y a menudo fatal. En infecciones secundarias con un serotipo diferente de DV la severidad de la enfermedad está relacionada con altos niveles de anticuerpos potenciadores y replicación viral en etapas tempranas de la infección, la cual es seguida de la activación de linfocitos T de memoria y otras células del sistema inmune y la producción de citocinas inflamatorias y otros mediadores químicos que causan el incremento de la permeabilidad capilar. Los avances en este campo de la inmunología han demostrado que la patogénesis del DHF/DSS es un proceso complejo y multifactorial relacionado con los factores virales y del hospedero.
REFERENCIAS (EN ESTE ARTÍCULO)
Kurane I. Dengue hemorrhagic fever with special emphasis on immunopathogenesis. Comp Immunol Microbiol Infect Dis. 2007 Sep;30(5-6):329-40. on “http://preview.ncbi.nlm. nih.gov/pubmed/17645944?itool=EntrezSystem2.PEntrez. Pubmed.Pubmed_ResultsPanel.Pubmed_RVDoc Sum&ordinalpos=5”
Halstead SB. Dengue. Lancet 2007; 370(9599): 1644-52.
Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 1998; 11: 480–96.
Burke DS, Monath TP. Flaviviruses. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia, USA: Lippincott Williams & Wilkins; 2001: 1043–125.
Castleberry JS, Mahon CR. Dengue fever in the Western Hemisphere. Clin Lab Sci 2003 Winter; 16(1): 34-8.
Lindenbach BD, Rice CM. Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia, USA: Lippincott Williams & Wilkins; 2001: 991–1041.
Lindenbach BD, Rice CM. Molecular biology of flaviviruses. Adv Virus Res 2003; 59: 23–61.
Monath TP, Tsai TF. Flaviviruses. In: Richman DD, Whitley RJ, Hayden FG, editors. Clinical Virology. Washington, DC: ASM Press; 2002: 1097–151.
Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature 2004; 427: 313-319.
Rey FA. Dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 2003; 100: 6986–6991.
Anderson R. Manipulation of cell surface macromolecules by flaviviruses. Adv Virus Res 2003; 59: 229–274.
Paes MV, Lenzi HL, Nogueira AC, Nuovo GJ, Pinhão AT, Mota EM, Basílio-de-Oliveira CA, Schatzmayr H, Barth OM, Alves AM. Hepatic damage associated with dengue-2 virus replication in liver cells of BALB/c mice. Lab Invest 2009; 89(10): 1140–51.
Arévalo MT, Simpson-Haidaris PJ, Kou Z, Schlesinger JJ, Jin X. Primary human endothelial cells support direct but not antibody-dependent enhancement of dengue viral infection. J Med Virol 2009; 81(3): 519–28.
Jessie K, Fong MY, Devi S, Lam SK, Wong KT. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 2004; 189: 1411–1418.
Wati S, Soo ML, Zilm P, Li P, Paton AW, Burrell CJ, Beard M, Carr JM. Dengue virus infection induces GRP78 which acts to chaperone viral antigen production. J Virol 2009 Sep 30. Epub 2009 Sep 30.
Hase T, Summers PL, Eckels KH. Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch Virol 1989; 104(1–2): 129-43.
Lee CJ, Lin HR, Liao CL, Lin YL. Cholesterol effectively blocks entry of flavivirus. J Virol 2008; 82(13): 6470–80.
Chen JP, Lu HL, Lai SL, Campanella GS, Sung JM, Lu MY et al. Dengue virus induces expression of CXC chemokine ligand 10/IFN-gamma-inducible protein 10, which competitively inhibits viral binding to cell surface heparan sulfate. J Immunol 2006; 177(5): 3185–92.
Lee E, Pavy M, Young N, Freeman C, Lobigs M. Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic flaviviruses. Antiviral Res 2006; 69(1): 31–8.
Prestwood TR, Prigozhin DM, Sharar KL, Zellweger RM, Shresta S. A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. J Virol 2008; 82(17): 8411–21.
Reyes-Del Valle J, Chávez-Salinas S, Medina F, Del Angel RM. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 2005; 79(8): 4557–67.
Kolli R, Khanam S, Jain M, Ganju L, Ram MS, Khanna N, Swaminathan S. A synthetic dengue virus antigen elicits enhanced antibody titers when linked to, but not mixed with,Mycobacterium tuberculosis HSP70 domain II. Vaccine 2006; 24(22): 4716–26.
Jindadamrongwech S, Thepparit C, Smith DR. Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 2004; 149(5): 915-27.
Limjindaporn T, Wongwiwat W, Noisakran S, Srisawat C, Netsawang J, Puttikhunt C et al. Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production. Biochem Biophys Res Commun 2009; 379(2): 196-200.
Chen YC, Wang SY, King CC. Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol 1999; 73(4): 2650–7.
Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 2003; 197(7): 823–9.
Kwan WH, Helt AM, Marañón C, Barbaroux JB, Hosmalin A, Harris E et al. Dendritic cell precursors are permissive to dengue virus and human immunodeficiency virus infection. J Virol 2005; 79(12): 7291–9.
Miller JL, de Wet BJ, Martínez-Pomares L et al. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 2008; 4: e17.
World Health Organization. Dengue haemorrhagic fever: diagnosis, treatment and control. Geneva: World Health Organization; 1997: 12–23.
Wilder-Smith A, Schwartz E. Dengue in travelers. N Engl J Med 2005; 353(9): 924–32.
Pandey BD, Igarashi A. Severity-related molecular differences among nineteen strains of dengue type 2 viruses. Microbiol Immunol 2000; 44(3): 179–88.
Anzai S, Fukuda M, Otsuka Y, Eshita Y. Nucleotide sequence and phylogenetic analyses of dengue type 2 virus isolated in the Dominican Republic. Virus Genes 2004; 29(2): 219–27.
Halstead SB. Antibodies determine virulence in dengue. Ann N Y Acad Sci 2009; 1171 Suppl 1: E48–56.
Álvarez M, Rodriguez-Roche R, Bernardo L, Vázquez S, Morier L, Gonzalez D et al. Dengue hemorrhagic Fever caused by sequential dengue 1-3 virus infections over a long time interval: Havana epidemic, 2001-2002. Am J Trop Med Hyg 2006; 75(6): 1113–7.
Guzmán MG, Kourí G, Valdés L, Bravo J, Vázquez S, Halstead SB. Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. Rev Panam Salud Publica 2002; 11(4): 223–7.
Guzmán MG, Kouri G, Bravo J, Soler M, Martínez E. Sequential infection as risk factor for dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) during the 1981 dengue hemorrhagic Cuban epidemic. Mem Inst Oswaldo Cruz 1991; 86(3): 367.
Ong A, Sandar M, Chen MI, Sin LY. Fatal dengue hemorrhagic fever in adults during a dengue epidemic in Singapore. Int J Infect Dis 2007; 11(3): 263–7.
Diamond MS, Edgil D, Roberts TG, Lu B, Harris E. Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 2000; 74(17): 7814–23.
Edgil D, Diamond MS, Holden KL, Paranjape SM, Harris E. Translation efficiency determines differences in cellular infection among dengue virus type 2 strains. Virology 2003; 317(2): 275–90.
Holmes EC. RNA virus genomics: a world of possibilities. J Clin Invest 2009; 119(9): 2488–95.
Shu PY, Su CL, Liao TL, Yang CF, Chang SF, Lin CC et al. Molecular characterization of dengue viruses imported into Taiwan during 2003-2007: geographic distribution and genotype shift. Am J Trop Med Hyg 2009; 80(6): 1039–46.
Koraka P, Williams MM, Djamiatun K, Setiati TE, van Batenburg FH, Stittelaar KJ et al. RNA secondary structures in the proximal 3’UTR of Indonesian Dengue 1 virus strains. Virus Res 2009; 142(1-2): 213-6. Epub 2009 Mar 13.
Pryor MJ, Carr JM, Hocking H, Davidson AD, Li P, Wright PJ. Replication of dengue virus type 2 in human monocyte-derived macrophages: comparisons of isolates and recombinant viruses with substitutions at amino acid 390 in the envelope glycoprotein. Am J Trop Med Hyg 2001; 65(5): 427-34.
Rabablert J, Wasi C, Kinney R, Kasisith J, Pitidhammabhorn D, Ubol S. Attenuating characteristics of DEN-2 PDK53 in flavivirus-naïve peripheral blood mononuclear cells. Vaccine 2007; 25(19): 3896–905.
Ubol S, Chareonsirisuthigul T, Kasisith J, Klungthong C. Clinical isolates of dengue virus with distinctive susceptibility to nitric oxide radical induce differential gene responses in THP-1 cells. Virology 2008; 376(2): 290–6.
Cummings DA, Schwartz IB, Billings L, Shaw LB, Burke DS. Dynamic effects of antibody-dependent enhancement on the fitness of viruses. Proc Natl Acad Sci USA 2005; 102(42): 15259–64.
Recker M, Blyuss KB, Simmons CP, Hien TT, Wills B, Farrar J, Gupta S. Immunological serotype interactions and their effect on the epidemiological pattern of dengue. Proc Biol Sci 2009; 276(1667): 2541–8. Epub 2009 Apr 15.
Morens DM. Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin Infect Dis 1994; 19(3): 500–12.
Boonnak K, Slike BM, Burgess TH, Mason RM, Wu SJ, Sun P et al. Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. J Virol 2008; 82(8): 3939–51.
Moi ML, Lim CK, Takasaki T, Kurane I. Involvement of the Fc{gamma} receptor IIA cytoplasmic domain in antibody dependent enhancement of dengue virus infection. J Gen Virol 2009; [Epub ahead of print].
Jin X. Cellular and molecular bases of antibody-denpending enhancement in human dengue pathogenesis. Future Virol 2008; 3(4): 343–61.
Klasse PJ, Sattentau QJ. Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol 2002; 83(Pt 9): 2091–108.
Pierson TC, Xu Q, Nelson S, Oliphant T, Nybakken GE, Fremont DH et al. The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 2007; 1(2): 135-45.
Rodrigo WW, Block OK, Lane C, Sukupolvi-Petty S, Goncalvez AP, Johnson S et al. Dengue virus neutralization is modulated by IgG antibody subclass and Fcgamma receptor subtype. Virology 2009; 394(2): 175-82. Epub 2009 Oct 14.
Goncalvez AP, Engle RE, St Claire M, Purcell RH, Lai CJ. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci USA 2007; 104(22): 9422–7.
Yamanaka A, Kosugi S, Konishi E. Infection-enhancing and -neutralizing activities of mouse monoclonal antibodies against dengue type 2 and 4 viruses are controlled by complement levels. J Virol 2008; 82(2): 927–37.
Lai CJ, Goncalvez AP, Men R, Wernly C, Donau O, Engle RE, Purcell RH. Epitope determinants of a chimpanzee dengue virus type 4 (DENV-4)-neutralizing antibody and protection against DENV-4 challenge in mice and rhesus monkeys by passively transferred humanized antibody. J Virol 2007; 81(23): 12766-74. Epub 2007 Sep 19.
van der Schaar HM, Wilschut JC, Smit JM. Role of antibodies in controlling dengue virus infection. Immunobiology 2009; [Epub ahead of print].
Rodrigo WW, Jin X, Blackley SD, Rose RC, Schlesinger JJ. Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signaling-incompetent human Fcgamma RIA (CD64) or FcgammaRIIA (CD32). J Virol 2006; 80(20): 10128–38.
Moi ML, Lim CK, Takasaki T, Kurane I. Involvement of the Fc{gamma} receptor IIA cytoplasmic domain in antibody dependent enhancement of dengue virus infection. J Gen Virol 2010 Jan;91(Pt 1):103-11.
Rothman AL. T lymphocyte responses to heterologous secondary dengue virus infections. Ann N Y Acad Sci 2009; 1171 Suppl 1: E36–41.
Basu A, Chaturvedi UC. Vascular endothelium: the battlefield of dengue viruses. FEMS Immunol Med Microbiol 2008; 53(3): 287–99.
Dong T, Moran E, Vinh Chau N, Simmons C, Luhn K, Peng Y et al. High pro-inflammatory cytokine secretion and loss of high avidity cross-reactive cytotoxic T-cells during the course of secondary dengue virus infection. PLoS One 2007; 2(12): e1192.
Imrie A, Meeks J, Gurary A, Sukhbataar M, Kitsutani P, Effler P, Zhao Z. Differential functional avidity of dengue virus-specific T-cell clones for variant peptides representing heterologous and previously encountered serotypes. J Virol 2007; 81(18): 10081-91. Epub 2007 Jul 11.
Beaumier CM, Mathew A, Bashyam HS, Rothman AL. Cross-reactive memory CD8(+) T cells alter the immune response to heterologous secondary dengue virus infections in mice in a sequence-specific manner. J Infect Dis 2008; 197(4): 608–17.
Mangada MM, Rothman AL. Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. J Immunol 2005; 175(4): 2676–83.
Beaumier CM, Rothman AL. Cross-reactive memory CD4+ T cells alter the CD8+ T-cell response to heterologous secondary dengue virus infections in mice in a sequence-specific manner. Viral Immunol 2009; 22(3): 215–9.
Leong AS, Wong KT, Leong TY, Tan PH, Wannakrairot P. The pathology of dengue hemorrhagic fever. Semin Diagn Pathol 2007; 24(4): 227–36.
Levy A, Valero N, Espina LM, Añez G, Arias J, Mosquera J. Increment of interleukin 6, tumour necrosis factor alpha, nitric oxide, C-reactive protein and apoptosis in dengue. Trans R Soc Trop Med Hyg 2009; [Epub ahead of print].
Yen YT, Chen HC, Lin YD, Shieh CC, Wu-Hsieh BA. Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol 2008; 82(24): 12312-24.
Vásquez-Ochoa M, García-Cordero J, Gutiérrez-Castañeda B, Santos-Argumedo L, Villegas-Sepúlveda N, Cedillo-Barrón L. A clinical isolate of dengue virus and its proteins induce apoptosis in HMEC-1 cells: a possible implication in pathogenesis. Arch Virol 2009; 154(6): 919–28.
Phuong HL, Thai KT, Nga TT, Giao PT, Hung le Q, Binh TQ et al. Detection of dengue nonstructural 1 (NS1) protein in Vietnamese patients with fever. Diagn Microbiol Infect Dis 2009; 63(4): 372–8.
Avirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S, Auethavornanan K et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis 2006; 193(8): 1078–88.
Chen MC, Lin CF, Lei HY, Lin SC, Liu HS, Yeh TM, et al. Deletion of the C-terminal region of dengue virus nonstructural protein 1 (NS1) abolishes anti-NS1-mediated platelet dysfunction and bleeding tendency. J Immunol 2009; 183(3): 1797–803.
Rawlinson SM, Pryor MJ, Wright PJ, Jans DA. CRM1-mediated nuclear export of dengue virus RNA polymerase NS5 modulates interleukin-8 induction and virus production. J Biol Chem 2009; 284(23): 15589–97.
Jaiyen Y, Masrinoul P, Kalayanarooj S, Pulmanausahakul R, Ubol S. Characteristics of dengue virus-infected peripheral blood mononuclear cell death that correlates with the severity of illness. Microbiol Immunol 2009; 53(8): 442–50.
Levy A, Valero N, Espina LM, Añez G, Arias J, Mosquera J. Increment of interleukin 6, tumour necrosis factor alpha, nitric oxide, C-reactive protein and apoptosis in dengue. Trans R Soc Trop Med Hyg 2010; 104(1): 16–23.
Valero N, Larreal Y, Espina LM, Reyes I, Maldonado M, Mosquera J. Elevated levels of interleukin-2 receptor and intercellular adhesion molecule 1 in sera from a venezuelan cohort of patients with dengue. Arch Virol 2008; 153(1): 199–203.
Priyadarshini D, Gadia RR, Tripathy A, Gurukumar KR, Bhagat A, Patwardhan S et al. Clinical findings and pro-inflammatory cytokines in dengue patients in Western India: a facility-based study. PLoS One 2010; 5(1): e8709.
Chen RF, Yang KD, Wang L, Liu JW, Chiu CC, Cheng JT. Different clinical and laboratory manifestations between dengue haemorrhagic fever and dengue fever with bleeding tendency. Trans R Soc Trop Med Hyg 2007; 101(11): 1106–13.
Lee YR, Liu MT, Lei HY, Liu CC, Wu JM, Tung YC, et al. MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells. J Gen Virol 2006; 87(Pt 12): 3623–30.
Rachman A, Rinaldi I. Coagulopathy in dengue infection and the role of interleukin-6. Acta Med Indones 2006; 38(2): 105–8.
Tsai YT, Chang SY, Lee CN, Kao CL. Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 2009; 11(4): 604–15.
Ho LJ, Hung LF, Weng CY, Wu WL, Chou P, Lin YL, et al. Dengue virus type 2 antagonizes IFN-alpha but not IFN-gamma antiviral effect via down-regulating Tyk2-STAT signaling in the human dendritic cell. J Immunol 2005; 174(12): 8163–72.
Mazzon M, Jones M, Davidson A, Chain B, Jacobs M. Dengue virus NS5 inhibits interferon-alpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation. J Infect Dis 2009; 200(8): 1261–70.
Nascimento EJ, Silva AM, Cordeiro MT, Brito CA, Gil LH, Braga-Neto U et al. Alternative complement pathway desregulation is correlated with dengue severity. PLoS One 2009; 4(8): e6782.