2008, Number 1
<< Back
Rev Biomed 2008; 19 (1)
Advances in vaccines development against the malaria
Rodríguez-López MH
Language: Spanish
References: 145
Page: 61-79
PDF size: 289.89 Kb.
ABSTRACT
Vaccines against the main malaria parasites,
Plasmodium falciparum and
P. vivax, would have direct application in public health programs designed to reduce the morbidity and mortality in endemic regions. The development of these vaccines faces difficulties imposed by the complexity of the parasites’ life cycle, their extensive antigenic polymorphism and their capacity to evade the host immune. On the other hand, the incomplete knowledge of the natural mechanisms and the parasitic molecules that induce resistance to malaria has prevented the selection of candidate antigens. Despite these difficulties, several vaccine candidates have passed preclinical and phase I and II tests. These include a vaccine containing antigens (RTS, S) present in the infective forms injected by the mosquitoes, designed to block human infection; a vaccine containing MSP1 present in the forms that invade erythrocytes, designed to mitigate the severity of the disease; and a vaccine based on proteins (Pvs 25) present in the forms that invade mosquitoes, designed to block parasite transmission. The advances in vaccines development in the last decade allow prediction that in a not very distant future it will be possible to count with an effective vaccine against this disease.
REFERENCES
Andre, FE. Vaccinology: past achievements, present roadblocks and future promises. Vaccine 2003; 21,593-595.
Bonanni, P. Demographic impact of vaccination: a review. Vaccine 1999; 17 Suppl. 3:S120-S125
Collins F, Besansky N. Vector biology and the control of malaria in Africa. Science 1994; 264:1874-1875.
Mackinnon MJ, Hastings IM. The evolution of multiple drug resistance in malaria parasites. Trans Roy Soc Trop Med HYg 1998; 92:188-195.
Hemingway J. Insecticide resistance in malaria vectors: a new approach to an old subject. Parassitologia 1999; 41:315-318
Phillips RS. Current status of malaria and potential for control. Clin Microbiol Rev 2001; 14:208-226.
Wilairatana P, Krudsood S, Treepraswrtsuk S, Chalemrut K, Looareesuwan S. The future outlook of antimalarial drugs and recent work on the treatment of malaria. Arch Med Res 2002; 33:416-421.
Organización Mundial de la Salud. World Malaria Report 2005. www.rbm.who.int/wmr2005/html/1-1.htm
Sachs, J, Malaney, P. The economic and social burden of malaria. Nature 2002; 415, 680-685.
Hill, AV. The immunogenetics of resistance to malaria. Proc Assoc Am Phys 1999; 111:272-277.
Troye-Blomberg M. Genetic regulation of malaria infection in humans. Chem Immunol 2002; 80:243-252.
Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold CI, Marsh K. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med 1998; 4:358-360.
Bull PC, Marsh K. The role of antibodies to Plasmodium falciparum-infected-erythrocyte surface antigens in naturally acquired immunity to malaria. Trends Microbiol 2002; 10:55-58.
Bouharoun-Tayoun H, Attanath P, Sabchareon A, Chongsuphajaisiddhi T, Druilhe P. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med 1990; 172:1633-1641.
Cohen S, McGregor IA, Carrington S. Gamma globulin and acquired immunity to human malaria. Nature 1961; 192:733-737.
McGregor, I. A. The passive transfer of human malarial immunity. Am J Trop Med Hyg 1964; 13: 237-239.
Kumar S, Epstein JE, Richie TL. Vaccines against asexual stage malaria parasites. Chem Immunol 2002; 80: 262-286.
Good MF, Kaslow DC, Miller LH. Pathways and strategies for developing a malaria blood-stage vaccine. Annu Rev Immunol 1998; 16: 57-87.
Richie TL, Saul A. Progress and challenges for malaria vaccines. Nature 2002; 415: 694-701.
Girard MP, Reed ZH, Friede M, Kieny MP. A review of human vaccine research and development: Malaria. Vaccine 2007; 25: 1567-1580.
Gardner MJ, Hall N, Fung E, White O, Berrman M, Hyman RW, et al. Genome sequence of human malaria parasite Plasmodium falciparum. Nature 2002; 419: 498-511.
Gardner MJ, Shallom SJ, Carlton JM, Salzberg SL, Nene V, Shoaibi A, et al. Sequence of Plasmodium falciparum chromosomes 2, 10, 11 and 14. Nature 2002; 419:531-534.
Garnham PCC. Malaria parasites in man: life cycles and morphology (excluding infrastructure) en Malaria Wersdorfer WH y McGregor I eds.1988. Churchill- Livingston, Edimburgo. Pp 61-99.
Sinden RE. Plasmodium differentiation in the mosquito. Parassitologia1999; 41:139-148.
Schofield L, Villaquiran J, Ferreira A, Schellekens H, Nussenzweig R, Nussenzweig V. Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sprozoites. Nature 1987; 330:664-666.
Leech JH, Barnwell JW, Miller LH, Howard RJ. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparuminfected erythrocytes. J Exp Med 1984; 159:1567-1575.
Nielsen MA, Staalsoe T, Kurtzhals JA, Goka BQ, Dodoo D, Alifrangis M, et al. Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J Immunol 2002; 168:3444-3450.
Nussenzweig RS, Vanderberg J, Orton C, Mosh H. Protective immunity produced by the injection of Xirradiated sporozoites of Plasmodium berghei. Nature 1967; 216:160-162.
Gwadz RW, Cochrane AH, Nussenzweig RS. Preliminary studies on vaccination of rhesus monkeys with irradiated sporozoites of P. knowlesi and characterization of surface antigens of these parasites. Bull Wld Hlth Org 1979; 57 Suplemento:165-173.
Clyde DF. Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am J Trop Med Hyg 1985; 24:397-401.
Yoshida N, Potocnjak P, Aikawa M, Nussenzweig V, Nussenzweig RS. Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasite. Science 1980; 207:71-73.
Nussenzweig V, Nussenzweig RS. Circumsporozoite proteins of malaria parasites. Cell 1985; 42: 401-403.
Menard R, Sultan AA, Cortes C, Altszuler R, Van Dijk MR, Janse CJ, et al. Circumsporozoite protein is required for development of malaria sporozoites in mosquitoes. Nature 1997; 385:336-340.
Sidjanski Sp, Vanderberg JP, Sinnis P. Anopheles stephensi salivary glands bear receptors for region I of the circumsporozoite protein of Plasmodium falciparum. Mol Biochem Parasitol 1997; 90:33-41.
Sinnis P, Clavijo P, Fenyo D, Chait BT, Cerami C, Nussenzweig V. Structural and functional properties of region II-plus of the malaria circumsporozoite protein. J Exp Med 1994; 180:297-306.
Nardin EH, Nussenzweig RS, McGregor IA, Bryan JH. Antibodies to sporozoites: Their frequent occurrence in individuals living in an area of hyperendemic malaria. Science 1979; 206:597-599.
Potocnjak P, Yoshida N, Nussenzweig RS, Nussenzweig V. Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malaria infection. J Exp Med 1980; 151:1505-1513.
Nardin EH, Nussenzweig V, Nussenzweig RS, Collins WE, Harinasuta KT, Tapchaisri P, et al. Circumsporozoite/CS) proteins of human malaria parasites Plasmodium falciparum and P, vivax. J Exp Med 1982; 156:20-30.
Hollingdale MR, Nardin EH, Tharavanij S, Schwartz A, Nussenzweig RS. Inhibition of entry of Plasmodium falciparum and Plasmodium vivax sporozoites into cultured cells. An in vitro assay for protective antibodies. J Immunol 1984; 132:909-913.
Tam JP, Clavijo P, Lu Y, Nussenzweig V, Nussenzweig RS, Zavala F. Incorporación of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria. J Exp Med 1990; 171:299-306.
Munesinghe DY, Clavijo P, Calvo MC, Nussenzweig RS, Nardin EH. immunogenicity of multiple antigen peptides (MAPs) containing T and B cell epitopes located within the repeat region of the P. falciparum circumsporozoite protein. Eur J Immunol 1991; 12:1015-1020.
Calvo-Calle JM, Hammer J, Sinigaglia F, Clavijo P, Moya-Castro ZR, Nardin EH. Binding of malaria T cell epitopes to DR and DQ molecules in vitro correlates with immunogenicity in vivo. Identification of a universal T cell epitope in the Plasmodium falciparum circumsporozoite protein. J Immunol 1997; 159:1362-1373.
Moreno A, Clavijo P, Edelman R, Davis J, Sztein M, Sinigaglia FA, et al. CD4+ cell clones obtained from Plasmodium falciparum sporozoite immunized volunteers recognize polymorphic sequences of the circumsporozite protein. J Immunol 1993; 151:489-499.
Moreno A, Rodrigues R, de Oliviera G, Ferreira V, Nussenzweig RS, Moyá-Castro ZR, et al. Pre-clinical evaluation of a synthetic Plasmodium falciparum MAP malaria vaccine in Aotus monkeys and mice Vaccine 1999; 18:89-99.
Stoute JA, Slaqui M, Heppner DG, Momin P, Kester KE, Desmonds P, et al. Preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciaparum malaria. N Engl J Med 1997; 336:86-91.
Que JU, Cryz SJ, Ballou WR. Effect of carrier selection on the immunogenicity of protein conjugate vaccines against Plasmodium falciparum sporozoites. Infect Immun 1988; 56: 2645-2649.
de Oliviera GA, Clavijo P, Nussenzweig RS, Nardin EH. Immunogenicity of an alum absorbed synthetic multiple antigen peptide system based on B and T cell epitopes of the Plasmodium falciparum CS protein: possible vaccine application. Vaccine 1994; 12: 1012-1017.
Fries LF, Gordon DM, Richards RL, Egan JE, Hollingdale MR, Gross M, et al. Liposomal malaria vaccine in humans: a safe adjuvant strategy. Proc Natl Acad Sci USA 1992; 89:358-362.
Fries LF, Gordon DM, Schneider I, Beier JC, Long GW, Gross M, et al. Safety, immunogenicity, and efficacy of Plasmodium falciparum vaccine comprising a circumsporozoite protein repeat region peptide conjugated to Pseudomonas aeruginosa toxin A. Infect Immun 1992; 60: 1834-1839.
Hoffman SL, Edelman R, Bryan JP, Schneider I, Davis J, Sedegah M, et al. Safety, immunogenicity, and efficacy of a malaria sporozoite vaccine administered with monophosphoryl lipid A, cell wall skeleton mycobacteria and squalene as adjuvant. Am J Trop Med Hyg 1994; 51: 603-612.
Romero P, Maryanski JL, Corradin G, Nussenzweig RS, Nuseenzweig V, Zavala F. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite (CS) protein and protect against malaria. Nature 1989; 341: 323-326.
Ferreira A, Schofield L, Enea V, Schellekens H, Van der Meide P, Collins WE, et al. Inhibition of development of EEF malaria parasites by gamma interferon. Science 1986; 232: 881-884.
Rodrigues MM, Nussenzweig RS, Romero P, Zavala F. The in vivo cytotoxic activity of CD8+ T cell clones correlates with their expression of adhesion molecules. J Exp Med 1992; 175: 895-905.
Heppner DG, Gordon DM, Gross M, Wellde B, Leitner W, Kryzch U, et al. Safety, immunogenicity, and efficacy of Plasmodium falciparum repeatless circumsporozoite protein vaccine encapsulated in liposomes. J Infect Dis 1996; 174: 361-366.
Li S, Rodrigues M, Rodrigues D, Rodriguez JR, esteban M, Palese P, et al. Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T cell-mediated protective immunity against malaria. Proc Natl Acad Sci USA 1993; 90: 5214-5218.
Wang R, Doolan DL, Le TP, Hedstrom RC, Coonan KM, Charoenvit Y, et al. Induction of antigen-specific cytotoxic lymphocytes in humans by malaria DNA vaccine. Science 1998; 282: 476-470.
Patarroyo ME, Amador R, Clavijo P, Moreno A, Guzman F, Romero P, et al. A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 1988; 332: 158-161.
Gordon DM, Duffy PE, Heppner DG, Lyon JA, Williams JS, Scheumann D, et al. Phase I safety and immunogenicity testing of clinical lots of the synthetic Plasmodium falciparum vaccine SPf66 produced under good manufacturing procedure conditions in the United States. Am J Trop Med Hyg 1996; 55: 63-68.
Lanar DE, Tine JA, de Taisne C, Seguin MC, Cox WI, Winslow JP, et al. Attenuated vaccinia virus-circumsprozoite protein recombinants confer protection against rodent malaria. Infect Immun 1996; 64: 16666-1671.
Ockenhouse CF, Sun PF, Lanar DE, Wellde BT, Hall BT, Kester K, et al. Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. J Infect Dis 1998; 177: 1664-1673.
Gordon DM, McGovern TW, Kzych U, Cohen JC, Schneider I, LaChance R, et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein hepatitis B surface antigen subunit vaccine. J Infect Dis 1995; 171: 1576-1585.
Alonso PL, Sacalal J, Aponte JJ, Leach A, Macete E, Milman J; et al. Efficacy of the RST,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomized controlled trial. Lancet 2004; 364: 1411-1420.
Bojang KA, Milligan PJ, Pinder M, Vigneron L, Alloueche A, Kster KE, et al. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomized trial. Lancet 2001; 358:1927-1934.
Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Aide P, et al. Duration of protectioin with RTS,S/ AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: singleblind extended follow-up of a randomized controlled trial. Lancet 2005; 366:2012-2018.
Aponte JJ, Aide P, Renom M, Mandomando I, Bassat Q, Sacarlal J, et al. Safety of the RTS,S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: a double blind randomized controlled phase I/IIb trial. Lancet 2007; 370:1543-1551.
Aikawa M, Miller LH, Johnson J, Rabbege J. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol 1978; 77:72-82.
Miller LH, Baruch DI, Marsh K, Doumbo, OK. The pathogenic basis of malaria. Nature 2002; 415: 673-679.
McGregor IA. The passive transfer of human malarial immunity. Am J Trop Med Hyg 1964; 13:237-239.
Bouharoun-Tayoun H, Oeuvray C, Lunel F, Druilhe, P. Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. J Exp Med 1995; 182:409-418.
Hirunpetcharat C, Finkelman F, Clark IA, Good MF. Malaria parasite-specific Th1-like T cells simultaneously reduce parasitemia and promote disease. Parasite Immunol 1999; 21:319-329.
Seixas E, Fonseca L, Langhorne J. The influence of gammadelta T cells on the CD4+ T cell and antibody response during a primary Plasmodium chabaudi chabaudi infection in mice. Parasit Immunol 2002; 24:131-140.
Good MF. Towards a blood-stage vaccine for malaria: are we following all the leads? Nat Rev Immunol 2001; 1: 117-125.
Suárez CF, Patarrollo ME, Trujillo E, Estupinan M, Baquero JE, Parra C, et al. Owl monkey MHC-DBR exon 2 reveals high similarity with several HLA-DBR lineales. Immunogenet 2006; 58:542-558.
Moncada CA, Guerrero E, Cárdenas P, Suárez CF, Patarrollo ME, Patarrollo MA. The T-cell receptor in primates: identifying and sequencing new owl monkey TRBV gene sub-groups. Immunogenet 2005; 57:42-52.
Rodríguez R, Moreno A, Guzmán F, Calvo M, Patarrollo ME. Studies in owl monkeys leading to the development of a synthetic vaccine against the asexual blood stages of Plasmodium falciparum. Am J Trop Med Hyg 1990; 43:339-354.
Pico de Coana Y, Rodríguez J, Guerrero E, Barrero C, Rodríguez R, Mendoza M, et al. A highly infective Plasmodium vivax strain adapted to Aoutus monkeys: quantitative haematological and molecular determinations useful for P. vivax vaccine development. Vaccine 2003; 21:3930-3937.
Patarrollo ME, Cifuentes G, Bermúdez A, Patarrollo MA. Strategies for developing multi-epitope, subunitbased, chemically-synthesized antimalarial vaccines. J Cell Mol Med 2008; en prensa.
Patarroyo G, Franco L, Amador R, Murillo LA, Rocha CL, Rojas M, Patarroyo ME. Study of the safety and immunogenicity of the synthetic malaria SPf66 vaccine in children aged 1–14 years. Vaccine1992; 10:175–178.
Alonso PL, Smith T, Schellenberg JR, Masanja H, Mwankusye S, Urassa H, et al. Randomised trial of efficacy of SPf66 vaccine against Plasmodium falciparum malaria in children in southern Tanzania. Lancet 1994; 344:1175–1181.
Alonso PL, Smith TA, Armstrong-Schellenberg JR, Kitua AY, Masanja H, Hayes R, et al. Duration of protection and age-dependence of the effects of the SPf66 malaria vaccine in African children exposed to intense transmission of Plasmodium falciparum. J Infect Dis 1996; 174:367–372.
Beck HP, Felger I, Huber W, Steiger S, Smith T, Weiss N, et al. Analysis of multiple Plasmodium falciparum infections in Tanzanian children during the phase III trial of the malaria vaccine SPf66. J Infect Dis 1997; 175:921–926.
Galindo CM, Acosta CJ, Schellenberg D, Aponte JJ, Roca A, Oettli A, et al. Humoral immune responses during a malaria vaccine trial in Tanzanian infants. Parasite Immunol 2000; 22:437–443.
Rosas JE, Pedraz JL, Hernandez RM, Gascon AR, Igartua M, Guzman F, et al. Remarkably high antibody levels and protection against P. falciparum malaria in Aotus monkeys after a single immunization of SPf66 encapsulated in PLGA microspheres. Vaccine 2002; 20:1707–1710.
Woehlbier U, Epp C, Kauth CW, Lutz R, Long CA, Coulibaly B, et al. Analysis of antibodies directed against merozoite surface protein 1 of the human malaria parasite Plasmodium falciparum. Infect Immun 2006; 74:1313–1322.
Udhayakumar V, Anyona D, Kariuki S, Shi YP, Bloland PB, Branch OH, et al. Identification of T and B cell epitopes recognized by humans in the Cterminal 42-kDa domain of the Plasmodium falciparum merozoite surface protein (MSP)-1. J Immunol 1995; 154:6022–30.
Blackman MJ, Holder AA. Secondary processing of the Plasmodium falciparum merozoite surface protein-1 (MSP1) by a calcium-dependent membrane-bound serine protease: Shedding of MSP133 as a noncovalently associated complex with other fragments of MSP1. Mol Biochem Parasitol 1992; 50:307-316.
Blackman MJ, Scott-Finnigan TJ, Shai S, Holder AA. Antibodies inhibit the protease-mediated processing of a malaria merozoite surface antigen. J Exp Med 1994; 180:389-393.
Kumar S, Yadava A, Keister DB, Tian JH, Ohl M, Perdue-Greenfield KA, et al. Immunogenicity and in vivo efficacy of recombinant Plasmodium falciparum merozoite surface protein-1 in Aotus monkeys. Mol Med 1995; 1:325-332.
Chang SP, Case SE, Gosnell WL, Hashimoto A, Kramer KJ, Tam LQ, et al. A recombinant baculovirus 42 kilodalton C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 protects Aotus monkeys against malaria. Infect Immun 1996; 64:253-262.
Chitarra V, Holm I, Bentley GA, Petres S, Longacre S. The crystal structure of C-terminal merozoite surface protein 1 at 1.8 A resolution, a highly protective malaria vaccine candidate. Mol Cell 1999; 3:457–464.
Sachdeva S, Mohmmed A, Dasaradhi PV, Crabb BS, Katyal A, Malhotra P, et al. Immunogenicity and protective efficacy of Escherichia coli expressed Plasmodium falciparum merozoite surface protein-1(42) using human compatible adjuvants. Vaccine 2006; 24:2007–2016.
Pichyangkul S, Gettayacamin M, Miller RS, Lyon JA, Angov E, Tongtawe P, et al. Pre-clinical evaluation of the malaria vaccine candidate P. falciparum MSP1(42) formulated with novel adjuvants or with alum. Vaccine 2004; 22:3831–3840.
Stoute JA, Gombe J, Withers MR, Siangla J, McKinney D, Onyango M, et al. MSP-1 Malaria vaccine Working Group. Phase 1 randomized doubleblind safety and immunogenicity trial of Plasmodium falciparum malaria merozoite surface protein FMP1 vaccine, adjuvanted with AS02A, in adults in western Kenya. Vaccine 2007; 25:176-184.
Mitchell GH, Thomas AW, Margos G, Dluzewski AR, Bannister LH. Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. Infect Immun 2004; 72:154–158.
Anders RF, Crewther PE, Edwards S, Margetts M, Matthew ML, Pollock B, et al. Immunisation with recombinant AMA-1 protects mice against infection with Plasmodium chabaudi. Vaccine 1998; 16:240–247.
Kennedy MC, Wang J, Zhang Y, Miles AP, Chitsaz F, Saul A, et al. In vitro studies with recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1): production and activity of an AMA1 vaccine and generation of a multiallelic response. Infect Immun 2002; 70:6948–6960.
Saul A, Lawrence G, Allworth A, Elliott S, Anderson K, Rzepczyk C, et al. A human phase 1 vaccine clinical trial of the Plasmodium falciparum malaria vaccine candidate apical membrane antigen 1 in Montanide ISA720 adjuvant. Vaccine 2005; 23:3076–3083.
Okech BA, Nalunkuma A, Okello D, Pang XL, Suzue K, Li J, et al. Natural human immunoglobulin G subclass responses to Plasmodium falciparum serine repeat antigen in Uganda. Am J Trop Med Hyg 2001; 65:912–917.
Druilhe P, Spertini F, Soesoe D, Corradin G, Mejia P, Singh S, et al. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum. PLoS Med 2005; 2:e344.
Okech B, Mujuzi G, Ogwal A, Shirai H, Horii T, Egwang TG. High titers of IgG antibodies against Plasmodium falciparum serine repeat antigen 5 (SERA5) are associated with protection against severe malaria in Ugandan children. Am J Trop Med Hyg 2006; 74:191–197.
Soe S, Singh S, Camus D, Horii T, Druilhe P. Plasmodium falciparum serine repeat protein, a new target of monocyte-dependent antibody mediated parasite killing. Infect Immun 2002; 70:7182–7184.
Genton B, Betuela I, Felger I, Al-Yaman F, Anders RF, Saul A, et al. A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. J Infect Dis 2002; 185:820–827.
Fluck C, Smith T, Beck HP, Irion A, Betuela I, Alpers MP, et al. Strain-specific humoral response to a polymorphic malaria vaccine. Infect Immun 2004; 72:6300–6305.
Baruch DI, Gormely JA, Ma C, Howard R J, Pasloske BL. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Proc Natl Acad Sci USA 1996; 93:3497-3502.
Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature 2002; 415:673-679.
Berndt Ar, Simmons DL, Tansey J, Newbold CI, Marsk K. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 1989; 341:57-59.
Newbold C, Warn P, Black G, Berendt A, Craig A, Snow B, et al. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am J Trop Med Hyg 1997; 57:389-398.
Reeder JC, Cowman AF, Davern KM, Beeson JG, Thompson KJ, Rogerson SJ, et al. The adhesion of Plasmodium falciparum- infected erythrocytes to chondroitin sulfate A is mediated by P. falciparum erythrocyte membrane protein 1. Proc Natl Acad Scie USA 1999; 27:5198-5202.
Andrews KT, Lanzer M. Maternal malaria: Plasmodium falciparum sequestration in the placenta. Parasitol Res 200; 288:715–723.
Craig A, Scherf A. Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Mol Biochem Parasitol 2001; 115:129–143.
Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold CI, Marsh K. parasite antigens on the infected cell surface are targets for naturally acquired immunity to malaria. Nat Med 1998; 4:358-360.
Duffy PE, Alister G, Craig A, Baruch DI. Variant proteins on the surface of malaria-infected erythrocytes-developing vaccines. Trends Parasitol 2001; 17:354- 356.
Chen Q, Pettersson F, Vogt AM, Schmidt B, Ahuja S, Liljestrom P, et al. Immunization with PfEMP1-DBL1alpha generates antibodies that disrupt rosettes and protect against the sequestration of Plasmodium falciparum-infected erythrocytes. Vaccine 2004; 22:2701–2712.
Smith JD, Deitsch KW. Pregnancy-associated malaria and the prospects for syndrome-specific antimalaria vaccines. J Exp Med 2004; 200:1093–1097.
Ahuja S, Pettersson F, Moll K, Jonsson C, Wahlgren M, Chen Q. Induction of cross-reactive immune responses to NTS-DBL-1alpha/x of PfEMP1 and in vivo protection on challenge with Plasmodium falciparum. Vaccine 2006; 24:6140-6154.
Makobongo MO, Keegan B, Long CA, Miller LH. Immunization of Aotus monkeys with recombinant cysteine-rich interdomain region 1 alpha protects against severe disease during Plasmodium falciparum reinfection. J Infect Dis 2006; 193:731–740.
Kaslow DC. Transmission-blocking vaccines: uses and current status of development. Int J Parasitol 1997; 27:183-189.
Carter R, Mendis KN, Miller LH, Molineaux L, Saul A. Malaria transmission-blocking vaccines--how can their development be supported? Nat Med 2000; 6:241-244.
Vermeulen AN, Van Deursen J, Brakenhoff RH, Lensen TH, Ponnudurai T, Meuwissen JH. Characterization of Plasmodium falciparum sexual stage antigens and their biosynthesis in synchronised gametocyte cultures. Mol Biochem Parasitol 1986; 20:155–163.
Williamson KC, Fujioka H, Aikawa M, Kaslow DC. Stage-specific processing of Pfs230, a Plasmodium falciparum transmission-blocking vaccine candidate. Mol Biochem Parasitol 1996; 78:161–169.
Riley EM, Bennett S, Jepson A, Hassan-King M, Whittle H, Olerup O, et al. Human antibody responses to Pfs 230, a sexual stage-specific surface antigen of Plasmodium falciparum: non-responsiveness is a stable phemotype but does nor appear to be genetically regulated. Parasite Immunol 1994; 16:55-62.
Riley EM, Williamson KC, Greenwood BM, Kaslow DC. Human immune recognition of recombinant proteins representing discrete domains of the Plasmodium falciparum gamete surface protein, Pfs230. Parasite Immunol 1995; 17:11-19.
Carter R, Coulson A, Bhatti S, Taylor BJ, Elliott JF. Predicted disulfide-bonded structures for three uniquely reated proteins of Plasmodium falciparum, Pfs230, Pfs48/49 and Pf12. Mol Biochem Parasitol 1995; 71:203-210.
Kocken CHM, Jansen J, Kaan AM, Beckers PJA, Ponnudurai T, Kaslow DC, et al. Cloning and expression of the gene coding for the transmission blocking target antigen Pfs48/45 of Plasmodium falciparum. Mol Biochem Parasitol 1993; 61:59–68.
Williamson KC, Keister DB, Muratova O, Kaslow DC. Recombinant Pfs230, a Plasmodium falciparum gametocyte protein, induces antisera that reduce the infectivity of Plasmodium falciparum to mosquitoes. Mol Biochem Parasitol 1995; 75:33–42.
Bustamante PJ, Woodruff DC, Oh J, Keister DB, Muratova O, Williamson KC. Differential ability of specific regions of Plasmodium falciparum sexual-stage antigen, Pfs230, to induce malaria transmission-blocking immunity. Parasite Immunol 2000; 22:373–80.
Milek RL, Roeffen WF, Kocken CH, Jansen J, Kaan AM, Eling WM, et al. Immunological properties of recombinant proteins of the transmission blocking vaccine candidate, Pfs48/45, of the human malaria parasite Plasmodium falciparum produced in Escherichia coli. Parasite Immunol 1998; 20:377–385.
Kaslow DC, Syin C, McCutchan TF, Miller LH. Comparison of the primary structure of the 25 kDa ookinete surface antigens of Plasmodium falciparum and Plasmodium gallinaceum reveal six conserved regions. Mol Biochem Parasitol 1989; 15:283-287.
Tomas AM, Margos G, Dimopoulos G, Van LinLH, de Koning-Ward TF, Sinha R, et al. P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO J 2001; 20:3975-3983.
Baton LA, Ranford-Cartwright LC. How do malaria ookinetes cross the mosquito midgut wall? Trend Parasitol 2005; 21:22-28.
Tsuboi T, Kaslow DC, Gozar MM, Tachibana M, Cao YM, Torii M. Sequence polymorphism in two novel Plasmodium vivax ookinete proteins, PVs25 and Pvs28, that are malaria transmission-blocking vaccine candidates. Mol Med 1998; 4:772-782.
Kaslow DC, Bathurst IC, Lensen T, Ponnudurai T, Barr PJ, Keister DB. Saccharomyces cerevisiae recombinant Pfs25 adsorbed to alum elicits antibodies that block transmission of Plasmodium falciparum. Infect Immun 1994; 62:5576–5580.
Barr PJ, Green KM, Gibson HL, Bathurst IC, Quakyi IA, Kaslow DC. Recombinant Pfs25 protein of Plasmodium falciparum elicits malaria transmissionblocking immunity in experimental animals. J Exp Med 1991; 174:1203–1208.
Gozar MM, Price VL, Kaslow DC. Saccharomyces cerevisiae-secreted fusion proteins Pfs25 and Pfs28 elicit potent Plasmodium falciparum transmission-blocking antibodies in mice. Infect Immun 1998; 66:59–64.
Arevalo-HerreraM, Solarte Y, Yasnot MF, Castellanos A, Rincón A, Saul A, et al. Induction of transmisión-blocking immunity in Aotus monkeys by vaccinatioin with a Plasmodium vivax clinical grade Pvs25 recombinant protein. Am J Trop Med Hyg 2005; 73 (Suplemento 5):32-37.
Collins WE, Barnwell JW, Sullivan JS, Nace D, Williams T, Bounngaseng A, et al. Assessment of transmission-blocking activity of candidate Pvs25 vaccine using gametocytes from chimpanzees. Am J Trop Med Hyg 2006; 74:215-221.
Malkin EM, Durbin AP, Diemert DJ, Sattabongkot J, Wu Y, Miura K, et al. Phase I vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine 2005; 23:3131–3138.
Sattabongkot J, Tsuboi T, Hisaeda H, Tachibana M, Suwanabun N, Rungruang T, et al. Blocking of transmission to mosquitoes by antibody to Plasmodium vivax malaria vaccine candidates Pvs25 and Pvs28 despide antigenic polymorphism in field isolates. Am J Trop Med Hyg 2003; 69:536-541.
Ballou WR, Arevalo-Herrera M, Carucci D, Richie TL, Corradin G, Diggs C, et al. Update on the clinical development of candidate malaria vaccines. Am J Trop Med Hyg 2004; 71:239-247.
Arakawa T, Tsuboi T, Kishimoto A, Sattabongkot J, Suwanabun N, Rungruang T, et al. Serum antibodies induced by intranasal immunization of mice with Plasmodium vivax Pvs25 co-administered with cholera toxin completely block parasite transmission to mosquitoes. Vaccine 2003; 21:3143–3148.
Wilson RJM, Phillips RS. Method to test inhibitory antibodies in human sera to wild populations of Plasmodium falciparum. Nature 1976; 263:132-134.
Perraut R, Marrama L, Diouf B, Sokhna C, Tall A, Nabeth P, et al. Antibodies to the conserved C-terminal domain of the Plasmodium falciparum merozoite surface protein 1 and to the merozoite extract and their relationship with in vitro inhibitory antibodies and protection against clinical malaria in a Senegalese village. J Infect Dis 2005; 191:264–271.
Pinder M, Sutherland CJ, Sisay-Joof F, Ismaili J, McCall MB, Ord R, et al. Immunoglobulin G antibodies to merozoite surface antigens are associated with recovery from chloroquine-resistant Plasmodium falciparum in Gambian children. Infect Immun 2006; 74:2887–2693.
Persson KE, Lee CT, Marsh K, Beeson JG. Developmentand optimization of high-throughput methods to measure Plasmodium falciparum-specific growth inhibitory antibodies. J Clin Microbiol 2006; 44:1665–1673.
Patarrollo ME, Patarrollo MA. Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Acc Chem Res 2008; 41:377-386.