2009, Number 1
<< Back Next >>
Alerg Asma Inmunol Pediatr 2009; 18 (1)
Antimicrobial peptides: peptides with multiple functions
Castañeda-Casimiro J, Ortega-Roque JA, Venegas-Medina AM, Aquino-Andrade A, Serafín-López J, Estrada-Parra S, Estrada I
Language: Spanish
References: 146
Page: 16-29
PDF size: 132.36 Kb.
ABSTRACT
Antimicrobial peptides (AMPs) are an evolutionarily conserved component of the innate immune response. Though originally discovered because of their microbicidal properties, their functions expand beyond this, including immunomodulatory and wound healing activities. Altered expression of AMPs in different tissues is an important factor that precludes pathogenesis of gastrointestinal, respiratory and other diseases. AMPs chemical and physical characteristic correlate with their microbicidal activities, which are exherted through pore formation on pathogen´s membrane or directly inhibiting bacterial metabolism, after cytoplasmic internalization. Many of these peptides have broad-spectrum activity against bacteria, fungi, parasites and enveloped virus, making them candidates for a new class of antibiotics. In this review we discuss the different function of AMPs.
REFERENCES
DeFranco A L, Locksley RM, Robertson M. Immunity. The immune response in infectious and inflammatory disease. Primers in Biology. USA: New Science Press. Ltd. Sinauer Associates: Inc. Publishers. Sunderlan, MA, 2007: 387.
Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003; 3: 710-720.
Brodgen KA. Antimicrobial Peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005; 3:238-250.
Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 1993; 61: 2978-2984.
Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 1998; 160: 91-96.
Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE. Sublethal concentrations of pleurocidin derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 2002; 46: 605-614.
Schauber J, Gallo RL. Expanding the roles of antimicrobial peptides in skin: Alarming and arming keratinocytes. J Invest Dermatol 2007; 127: 510-512.
Kozuella R, Von Degenfeld G, Kupatt C, Krotz E, Zahler S, Gloe T, Issbrücker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake A, Pfosser A, Boekstegers P, Welsh U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 2003; 111: 1665-1672.
Brogden KA. A specific overview of the short proline-rich antimicrobial peptides from insects. Nature Rev 2005; 3: 238-250.
Vizioli J, Salzet M. Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol Sci 2002; 23: 494-496.
Gennaro R, Zanetti M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymer 2000; 55: 31-49.
Hancock RE, Patrzykat A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2002; 2: 79-83.
Brogden KA, Ackermann M, Huttner KM. Detection of anionic antimicrobial peptides in ovine bronchoalveolar lavage fluid and respiratory epithelium. Infect Immun 1998; 66: 5948-5954.
Brogden KA, De Lucca AJ, Bland J, Elliott S. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc Natl Acad Sci USA 1996; 93: 412-416
Brogden KA, Ackermann MR, McCray PB Jr, Huttner KM. Differences in the concentrations of small, anionic, antimicrobial peptides in bronchoalveolar lavage fluid and in respiratory epithelia of patients with and without cystic fibrosis. Infect Immun 1999; 67: 4256-4259.
Brogden KA, Ackermann M, Huttner KM. Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial. Antimicrob Agents Chem 1997; 41: 1615-1617.
Tossi A, Sandri L, Giangaspero A. Amphipathic, α-helical antimicrobial peptides. Biopolymers 2002; 55: 4-30.
Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 1998; 273: 3718-3724.
Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. Structure–activity analysis of buforin II, a histone H2A derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 2000; 97: 8245-8250.
Otvos L Jr. The short proline-rich antibacterial peptide family. Cell Mol Life Sci 2002; 59: 1138-1150.
Ganz T, Lehrer RI. Defensins. Curr Opin Immunol 1994; 4: 584-589.
Lehrer RI, Ganz T. Anti-microbial peptides in mammalian and insect host defense. Curr Oping Immunol 1999; 11: 23-27.
Fulton C, Anderson GM, Zasloff M, Bull R, Quinn AG. Expression of natural peptide antibiotics in human skin. Lancet 1997; 350: 1950-1951.
Harder J, Bartels J, Christophers E, Schröder JM. A peptide antibiotic from human skin. Nature 1997; 387: 861-862.
Harder J, Bartels J, Christophers E, Schröder JM. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 2001; 276: 5707-5713.
Harder J, Meyer-Hoffert U, Wehkamp K, Schwichtenberg L, Schröder JM Differential gene induction of human β-defensin (hBD-1, -2, -3 and -4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol 2004; 123: 522-529.
Ali RS, Falconer A, Ikram M, Bissell CE, Cerio R, Quinn AG. Expression of the peptide antibiotics human β-defensin-1 and human β-defensin-2 in normal human skin. J Invest Dermatol 2001; 117: 106-111.
Oppenheim JJ, Biragyn A, Kwak LW, Yang D. Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis 2003; 62: 17-21.
Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G, Zack JA, Waring AJ, Yang OO, Lehrer RI. Retrocyclin: a primate peptide that protects cells from infection by T- and Mtropic strains of HIV-1. Proc Natl Acad Sci USA 2002; 99: 1813-1818.
García JR, Jaumann F, Schulz S, Krause A, Rodríguez-Jiménez J, Forssmann U, Adermann K, Klüver E, Vogelmeier C, Becker D, Hedrich R, Forssmann WG, Bals R. Identification of a novel, multifunctional β-defensin (human β-defensin -3) with specific antimicrobial activity: Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res 2001; 306: 257-264.
Reithmayer K, Meyer KC, Kleditzsch P, Tiede S, Uppalapati SK, Gläser R, Harder J, Schröder JM, Paus R. Human hair follicle epithelium has an antimicrobial defense system that system that includes the induclible antimicrobial peptide psoriasin. Br J Dermatol 2009; En prensa.
Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 2000; 96: 3086-3093.
Ganz T, Selsted ME, Szklarek D, Harwing SSI, Daher K, Bainto DF, Lehrer RI. Defensins: natural peptide antibiotics of human neutrophils. J Clin Invest 1985; 76: 1427-1435.
Wilde CG, Griffith JE, Marra MN, Snable JL, Scott RW. Purification and characterization of human neutrophil peptide 4, a novel member of defensin family. J Biol Chem 1989; 264: 1120-203.
Rice WG, Ganz T, Kinkade JM, Selsted ME, Lehrer RI, Parmely RT. Defensin-rich dense granules of human neutrophils. Blood 1987; 70: 757-765.
Svinarieh DM, Wolf NA, Gomez R, Gonik B, Romero R. Detection of human defensin 5 in reproductive tissues. Am J Obstet Gynecol 1997; 176: 170-175.
Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB Jr. Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA 2002; 99: 2129-2133.
Liu L, Roberts A, Ganz T. By IL-signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. J Immunol 2003; 170: 575-580.
Bensch KW, Raida M, Magert H J, Schulz-Knappe P, Forssmann WG. hBD-1: a novel β-defensin from human plasma. FEBS Lett 1995; 368: 331-335.
Zhao C, Wang I, Lehrer RI. Widespread expression of β-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 1996; 396: 319-322.
McCray Jr, PB, Bentley L. Human airway epithelia express a β-defensin. Am J Respir Cell Mol Biol 1997; 16: 343-349.
Singh PK, Jia HP, Wiles K, Hesselberth J, Liu L, Conway BA, Greenberg EP, Valore EV, Welsh MJ, Ganz T, Tack BE, McCray PB Jr. Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci USA 1998; 95: 14961-14966.
Valore EV, Park CH, Quayle AJ, Wiles KR, McCrag PB Jr, Ganz T. Human β-defensin-1: an anti-microbial peptide of urogenital tissues. J Clin Invest 1998; 101: 1633-1642.
Krisanaprakornkit S, Weinberg A, Perez CN, Dale BA. Expression of the peptide antibiotic human β-defensin 1 in cultured gingival epithelial cells and gingival tissue. Infect Immun 1998; 66: 4222-4228.
Mathews M, Jia HP, Guthmiller JM, Losh G, Graham S, Johnson GK, Tack BF, McCray PB Jr. Production of beta-defensin anti-microbial peptides by the oral mucosa and salivary glands. Infect Immun 1999; 67: 2740-2745.
O’Neil DA, Porter EM, Elewaut D, Anderson GM, Eckmann L, Ganz T, Kagnoff MF. Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 1999; 163: 6718-6724.
Sorensen OE, Thapa DR, Rosenthal A, Liu L, Roberts AA, Ganz T. Differential regulation of β-defensin expression in human skin by microbial stimuli. J Immunol 2005; 174: 4870-4879.
Tsutsumi IY, Nagaoka I. Modulation of human β defensin 2 transcription in pulmonary enhance the epidermal cells by lipopolysaccharide-stimulated mononuclear phagocytes via proinflammatory cytokine production. J Immunol 2003; 170: 4226-4236.
Schauber J, Dorschner RA, Yamasaki K, Brouha B, Gallo RL. Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 2006; 118: 509-519.
Di Nardo A, Vitiello A, Gallo RL. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J Immunol 2003; 170: 2274-2278.
Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 1997; 89: 3503-3521.
Agerberth B, Grunewald J, Castanos-Velez E, Olsson B, Jörnvall H, Wigzell H, Eklund A, Gudmundsson GH. Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am J Respir Crit Care Med 1999; 160: 283-290.
Murakami M, Ohtake T, Dorschner RA et al. Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 2002; 81:845-850.
Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL. Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 2002; 119: 1090-1095.
Marchini G, Lindow S, Brismar H, Stabi B, Berggren V, Ulfgren AK, Lonne-Rahm S, Agerberth B, Gudmundsson GH. The newborn infant is protected by an innate antimicrobial barrier: peptide antibiotics are present in the skin and vernix caseosa. Br J Dermatol 2002; 147: 1127-1134.
Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson GH. The expression of the gene coding for the anti-microbial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997; 272: 15258-15263.
Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad anti-microbial activity at the airway surface. Proc Natl Acad Sci USA 1998; 95: 9541-9546.
Birchsler T, Reinhart S, Büchner K, Loeliger S, Reinhard S, Hossle P, Aguzzi A, Launer R. Human Toll-like receptor mediates induction of the antimicrobial peptide human beta-defensin 2 in response to bacterial lipoprotein. Eur J Immunol 2001; 31: 3131-3137.
Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1999; 1462: 71-87.
Hancock RE, Rozek A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 2002; 206: 143-149.
Hancock RE. Antibacterial peptides and the outer membranes of Gram-negative bacilli. J Med Microbiol 1997; 46: 1-3.
Chen FY, Lee MT, Huang HW. Evidence for membrane thinning effect as the mechanism for peptide induced pore formation. Biophys J 2003; 84: 3751-758.
Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrelstave model or toroidal model? A case study on melittin pores. Biophys J 2001; 81: 1475-1485.
Yamaguchi S, Huster D, Waring A, Lehrer RI, Kearney W, Tack BF, Hong M. Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy. Biophys J 2001; 81: 2203-2214.
Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 1992; 31: 12416-12423.
Ehrenstein G, Lecar H. Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 1977; 10: 1-34.
Spaar A, Munster C, Salditt T. Conformation of peptides in lipid membranes studied by X-ray grazing incidence scattering. Biophys J 2004; 87: 396-407.
Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 1996; 35: 11361-11368.
Hallock KJ, Lee DK, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 2003; 84: 052-3060.
Wu M, E Maier R, Benz, Hancock RE. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 1999; 38: 7235-7242.
Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1998; 1376: 391-400.
Chan DI, Prenner EJ, Vogel HJ. Tryptophan-and argininerich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 2006; 1758: 1184-202.
Miteva M, Andersson M, Karshikoff A, Otting G. Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin. FEBS Lett 1999; 462: 155-158.
Pokorny A, Almeida PF. Kinetics of dye efflux and lipid flipflop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alphahelical peptides. Biochemistry 2004; 43: 8846-8857.
Boman HG, Agerberth B, Boman A. Mechanisms affection on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 1993; 61: 2978-2984.
Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. Structure–activity analysis of buforin II, a histone H2Aderived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 2000; 97: 8245-8250.
Gryllos I, Tran-Winkler HJ, Cheng MF, Chung H, Bolcome R 3rd, Lu W, Lehrer RI, Wessels MR. Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc Natl Acad Sci USA 2008; 105: 16755-16760.
Bals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res 2000; 1: 141-50.
Kragol GS, Lovas G, Varadi BA, Condie R, Hoffmann L, Otvos. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 2001; 40: 3016-3026.
Otvos L Jr, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 2000; 39: 14150-14159.
De Lucca AJ, Bland JM, Jacks TJ, Grimm C, Walsh TJ. Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin. Med Mycol 1998; 36: 291-98.
Barbault F, Landon C, Guenneugues M, Meyer JP, Schott V, Dimarcq JL, Vovelle F. Solution structure of Alo-3: a new knot tintype antifungal peptide from the insect Acrocinus longimanus. Biochemistry 2003; 42: 14434-42.
Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev 2006; 19: 491-511.
Lee DG, Hahm KS, Shin SY. Structure and fungicidal activity of a synthetic antimicrobial peptide, P18, and its truncated peptides. Biotechnol Lett 2004; 26:337-341.
Lee DG, Kim HK, Kim SA, Park Y, Park SC, Jang SC, Hahm KS. Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochem Biophys Res Commun 2003; 305: 305-310.
Narasimhan ML, Damsz B, Coca MA, Ibeas JI, Yun DJ, Pardo JM, Hasegawa PM, Bressan RA. A plant defense response effector induces microbial apoptosis. Mol Cell 2001; 8: 921-930.
Lupetti A, Paulusma-Annema A, Senesi S, Campa M, Van Dissel JT, Nibbering H. Internal thiols and reactive oxygen species in candidacidal activity exerted by an N-terminal peptide of human lactoferrin. Antimicrob Agents Chemother 2002; 46: 1634-1639.
Helmerhorst EJ, Troxler RF, Oppenheim FG. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci USA 2001; 98: 1437-1442.
Kim DH, Lee YT, Lee YJ, Chung JH, Lee BL, Choi BS, Lee Y. Bacterial expression of tenecin 3, an insect antifungal protein isolated from Tenebrio molitor, and its efficient purification. Mol Cells 1998; 8: 786-789.
Kim DH, Lee DG, Kim KL, Lee Y. Internalization of tenecin 3 by a fungal cellular process is essential for its fungicidal effect on Candida albicans. Eur J Biochem 2001; 268: 4449-4458.
Lee YT, Kim DH, Suh JY, Chung JH, Lee BL, Lee Y, Choi BS. Structural characteristics of tenecin 3, an insect antifungal protein. Biochem Mol Biol Int 1999; 47: 369-376.
Helmerhorst EJ, van’t Hof W, Breeuwer P, Veerman EC, Abee T, Troxler RF, Amerongen AV, Oppenheim FG. The celullar target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 2001; 276: 5643-5649.
Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 2004; 75: 39-48.
Alberola J, Rodriguez A, Francino O, Roura X, Rivas L, Andreu D. Safety and efficacy of antimicrobial peptides against naturally acquired leishmaniasis. Antimicrob Agents Chemother 2004; 48: 641-643.
Davis AJ, Kedzierski L. Recent advances in antileishmanial drug development. Curr Opin Investig Drugs 2005; 6: 163-169
Park Y, Jang SH, Lee DG, Hahm KS. Antinematodal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Caenorhabditis elegans. J Pept Sci 2004; 10: 304-11.
Roch P, Beschin A, Bernard E. Antiprotozoan and antiviral activities of non-cytotoxic truncated and variant analogues of mussel defensin. Evid Based Complement Alternat Med 2004; 1: 167-174.
Guerrero E, Saugar JM, Matsuzaki K, Rivas L. Role of positional hydrophobicity in the leishmanicidal activity of magainin 2. Antimicrob Agents Chemother 2004; 48: 2980-2986.
Mettenleiter TC. Brief overview on cellular virus receptors. Virus Res 2002; 82: 3-8.
Spillmann D. Heparan sulfate: anchor for viral intruders? Biochimie 2001; 83: 811-817.
James S, Gibbs BF, Toney K, Bennett HP. Purification of antimicrobial peptides from an extract of the skin of Xenopus laevis using heparin-affinity HPLC: characterization by ionspray mass spectrometry. Anal Biochem 1994; 217: 84-90.
Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 2002; 46: 157-168.
Schmidtchen A, Frick IM, Bjorck L. Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mol Microbiol 2001; 39: 708-713.
Mikloska Z, Cunningham AL. Alpha and gamma interferons inhibit herpes simplex virus type 1 infection and spread in epidermal cells after axonal transmission. J Virol 2001; 75: 11821-11826.
Tamamura H, Ishihara T, Otaka A, Murakami T, Ibuka T, Waki M, Matsumoto M, Yamamoto N, Fujii N. Analysis of the interaction of an anti-HIV peptide, T22 ([Tyr5, 12, Lys7]-polyphemusin II), with gp120 and CD4 by surface plasmon resonance. Biochim Biophys Acta 1996; 1298: 37-44.
Yasin B, Wang W, Pang M, Cheshenko N, Hong T, Waring AJ, Herold BJ, Wagar EA, Lehrer RI. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol 2004; 78: 5147-56.
Tamamura H, Otaka A, Murakami T, Ishihara T, Ibuka T, Waki M, Matsumoto A, Yamamoto M, Fujii N. Interaction of an anti-HIV peptide, T22, with gp120 and CD4. Biochem Biophys Res Commun 1996; 219: 555-559.
Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta 1999; 1462: 29-54.
Andersen JH, Jenssen H, Sandvik K, Gutteberg TJ. AntiHSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface. J Med Virol 2004; 74: 262-271.
Haukland HH, Ulvatne H, Sandvik K, Vorland LH. The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett 2001; 508: 389-393.
Wachinger M, Kleinschmidt A, Winder D, von Pechmann N, Ludvigsen A, Neumann M, Holle R, Salmons B, Erfle V, Brack-Werner R. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 1998; 79: 731-740
Van’t Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV. Antimicrobial peptides: properties and applicability. Biol Chem 2001; 382: 597-619.
Mantovani HC, Russell JB. Nisin resistance of Streptococcus bovis. Appl Environ Microbiol 2001; 67: 808-813.
Pálffy R, Gardlík R, Behuliak M, Kadasi L, Turna J, Celec P. On the physiology and pathophysiology of antimicrobial peptides. Mol Med 2009; 15: 51-59.
Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2001: 55: 27-55.
Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 1999; 274: 8405-8410.
Kristian SA, Durr M, Van Strijp JA, Neumeister B, Peschel A. MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygenin dependent neutrophil killing. Infect Immun 2003; 71: 546-549.
Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, Van Kessel KP, van Strijp JA. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J Exp Med 2001; 193: 1067-1076.
Campos MA, Vargas MA, Regueiro V, Llompart CM, Albertí S, Bengoechea JA. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 2004; 72: 7107-7114.
Groisman EA, Parra-Lopez C, Salcedo M, Lipps CJ, Heffron F. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci USA 1992; 89: 11939-11943.
McPhee JB, Lewenza S, Hancock REW. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA–PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 2003; 50: 205-17.
Guo L, Lim KB, Gunn JS, Bainbridge B, Darveau RP, Hackett M, Miller SI. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP–phoQ. Science 1997; 276: 250-253.
Visser LG, Hiemstra PS, Van Den Barselaar MT, Ballieux PA, Van Furth R. Role of yadA in resistance to killing of Yersinia enterocolitica by antimicrobial polypeptides of human granulocytes. Infect Immun 1996; 64: 1653-1658.
Parra-Lopez C, Baer M, Groisman EA. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO J 1993; 12: 4053-4062.
Groisman E. A How bacteria resist killing by host-defense peptides. Trends Microbiol 1994; 2: 444-448.
Morioka Y, Yamasaki K, Leung D, Gallo R. Cathelicidin antimicrobial peptides inhibit hyaluronan-incuded cytokine relea se and modulate chronic allergic dermatitis. J Immunol 2008; 181: 3915-3922.
Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 2003; 171: 3262-3269.
Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, López-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 1999; 286: 113-117.
Matsushita I, Hasegawa K, Nakata K, Yasuda K, Tokunaga K, Keicho N. Genetic variants of human β-defensin-1 and chronic obstructive pulmonary disease. Biochem Biophys Res Commun 2002; 291: 17-22.
Jurevic RJ, Bai M, Chadwick RB, White TC, Dale BA. Singlenucleotide polymorphisms (SNPs) in human β-defensin 1: high-throughput SNP assays and association with Candida carriage in type I diabetics and nondiabetic controls. J Clin Microbiol 2003; 41: 90-96.
Befus AD, Mowat C, Gilchrist M, Hu J, Solomon S, Bateman A. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol 1999; 163: 947-953.
Van Wetering S, Mannesse-Lazeroms SP, Dijkman JH, Hiemstra PS. Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production. J Leukoc Biol 1997; 62: 217-226.
Panyutich AV, Szold O, Poon P H, Tseng Y, Ganz, T. Identification of defensin binding to C1 complement. FEBS Lett 1994; 356: 169-173.
Prohaszka Z, Nemet K, Csermely P, Hudecs F, Mezo G, Fust G. Defensins purified from human granulocytes bind C1q and activate the classical complement pathway like the transmembrane glycoprotein gp41 of HIV-1. Mol Immunol 1997; 34: 809-816.
Van den Berg RH, Faber-Krol MC, van Wetering S, Hiemstra PS, Daha MR. Inhibition of activation of classical pathway of complementary human neutrophil defensins. Blood 1998; 92: 3898-3903.
Solomon S, Hu J, Zhu Q, Belcourt D, Bennett HPJ, Bateman A, Antakly T. Corticostatic peptides. J Steroid Biochem Mol Biol 1991; 40: 391-398.
Zhu Q, Hu J, Mulay S, Esch F, Shimasaki S, Solomon S. Isolation and structure of corticostatin peptides from rabbit fetal and adult lung. Proc Natl Acad Sci USA 1988; 85: 592-596.
Tominaga T, Fukata J, Naito Y, Funakoshi S, Fujii N, Imura H. Effects of corticostatin-I on rat adrenal cells in vitro. J Endocrinol 1990; 125: 287-292.
Zhu Q, Solomon S. Isolation and model of action of rabbit corticostatic (antiadrenocorticotropin) peptides. Endocrinology 1992; 130: 1413-1423.
Lillard Jr W, Boyaka PN, Chertov O. Oppenheim JJ, McGhee JR. Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc Natl Acad Sci USA 1999; 96: 651-656.
Bateman A, MacLeod RJ, Lembessis P, Hu J, Esch F, Solomon S. The isolation and characterization of a novel corticostatin/defensin-like peptide from the kidney. J Biol Chem 1996; 271: 10654-10659.
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415: 389-395.
da Silva AP, Unks D, Lyu SC, Ma J, Zbozien-Pacamaj R, Chen X, Krensky AM, Clayberger C. In vitro and in vivo antimicrobial activity of granuloysin-derived peptides against Vibrio cholerae. J Antimicrob Chemother 2008; 61: 1103-9.
Groot F, Sanders RW, ter Brake O, Nazmi K, Veerman ECI, Bolscher JGM, Berhout B. Histatin 5-Derived Peptide with improved fungicidal properties enhances human immunodeficiency virus type 1 replication by promoting viral entry. J Virol 2006; 80:9236-9243.
Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 2009; 37: D933-D937.
Hammami R, Hamida JB, Vergoten G, Fliss I. PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 2009; 37: D963-D968.