2009, Number 2
<< Back Next >>
Gac Med Mex 2009; 145 (2)
Las proteasas en la progresión neoplásica
Flores-Reséndiz D, Castellanos-Juárez E, Benítez-Bribiesca L
Language: Spanish
References: 193
Page: 131-142
PDF size: 143.99 Kb.
ABSTRACT
Invasion and metastasis are the most important events in cancer progression. In these two phases, several molecules are implicated and have been long associated with several forms of cancer. Proteases play a critical role not only in tumor cell invasion, but also in the earliest stages of carcinogenesis and its associated changes: angiogenesis and metastasis. Aside from their ability to degrade the extracellular matrix, facilitate invasion and metastasis, proteases target a great variety of substrates that favor or inhibit cancer progression: b-FGF, HGF, VEGF, cell death receptors, cistatin-C, galectin, procollagen, and other proteases. Proteases are also signaling molecules that modulate other molecules by underlying pathways in addition to their degradative role. Proteases form interconnected cascades, circuits and networks that bring about the tumor’s potential for malignancy. Although, proteases are regulated by diverse molecules, it is known that tumoral and stromal cells secrete several biological molecules, including cytokines and chemokines that directly or indirectly regulate the protease-expression within the tumor’s microenvironment. The present review briefly summarizes some of the major aspects associated with the role of proteases in cancer progression.
REFERENCES
Woodward J, Holen I, Coleman R, Buttle D. The roles of proteolytic enzymes in the development of tumour-induced bone disease in breast and prostate cancer. Bone 2007;41:912-927.
Greenlee K, Werb Z, Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev 2007;87:69-98.
Gaetje R, Holtrich U, Engels K, Kourtis K, Cikrit E, Kissler S, et al. Expression of membrane-type 5 matrix metalloproteinase in human endometrium and endometriosis. Gynecol Endocrinol 2007;23:567-573.
Chambers A, Groom A, MacDonald I. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002;2:563-572.
Mareel M, Leroy A. Clinical, cellular and molecular aspects of cancer invasion. Physiol Rev 2003;83:337-376.
Weigelt B, Peterse J, van ‘t Veer L. Breast cancer metastasis: markers and models. Nat Rev Cancer 2005;5:591-602.
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86:353-364.
Stacker S, Achen M, Jussila L, Baldwin M, Alitalo K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2002;2:573-583.
Janes S, Watt F. New roles for integrins in squamous-cell carcinoma.Nat Rev Cancer 2006;6:175-183.
Reardon D, Wen P, Desjardins A, Batchelor T, Vredenburgh J. Glioblastoma multiforme: an emerging paradigm of anti-VEGF therapy. Expert Opin Biol Ther 2008;8:541-553.
Xie J. Molecular biology of basal and squamous cell carcinomas. Adv Exp Med Biol 2008;624:241-251.
López-Otín C, Overall C. Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 2002;3:509-519.
Atkinson J, Siller C, Gill J. Tumour endoproteases: the cutting edge of cancer drug delivery? Br J Pharmacol 2008;153:1344-1352.
Huber M, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005;17:548-558.
Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003;3:362-374.
Comoglio P, Trusolino L. Invasive growth: from development to metastasis. J Clin Invest 2002;109:857-862.
Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H, Mikulits W. Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat Res 2004;566:9-20.
Prindull G, Zipori D. Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood 2004;103:2892-2899.
Deryugina E, Quigley J. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006;25:9-34.
Steeg P. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006;12:895-904.
Yamauchi K, Yang M, Jiang P, Yamamoto N, Xu M, Amoh Y, et al. Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res 2005;65:4246-4252.
Overall C, Dean R. Degradomics: systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Rev 2006;25:69-75.
Sugino T, Yamaguchi T, Ogura G, Saito A, Hashimoto T, Hoshi N, et al. Morphological evidence for an invasion-independent metastasis pathway exists in multiple human cancers. BMC Med 2004;2-9.
Tsuji K, Yamauchi K, Yang M, Jiang P, Bouvet M, Endo H, et al. Dual-color imaging of nuclear-cytoplasmic dynamics, viability, and proliferation of cancer cells in the portal vein area. Cancer Res 2006;66:303-306.
Condeelis J, Segall J. Intravital imaging of cell movement in tumours. Nat Rev Cancer 2003;3:921-930.
Yamaguchi H, Wyckoff J, Condeelis J. Cell migration in tumors. Curr Opin Cell Biol 2005;17:559-564.
Wyckoff J, Jones J, Condeelis J, Segall J. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 2000;60:2504-2511.
Brandt B, Heyder C, Gloria-Maercker E, Hatzmann W, Rötger A, Kemming D, et al. 3D-extravasation model — selection of highly motile and metastatic cancer cells. Semin Cancer Biol 2005;15:387-395.
Condeelis J, Singer R, Segall J. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 2005;21:695-718.
Bhowmick N, Neilson E, Moses H. Stromal fibroblasts in cancer initiation and progression. Nature 2004;432:332-337.
Liang P, Hong J, Ubukata H, Liu G, Katano M, Motohashi G, et al. Myofibroblasts correlate with lymphatic microvessel density and lymph node metastasis in early-stage invasive colorectal carcinoma. Anticancer Res 2005;25:2705-2712.
Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol 1992;3:65-71.
Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004;4:71-78.
Metcalfe D, Baram D, Mekori Y. Mast cells. Physiol Rev 1997;77:1033-1079.
Coussens L, Werb Z. Inflammation and cancer. Nature 2002;420:860-867.
Mueller M, Fusenig N. Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 2004;4:839-849.
Liotta L, Rao C, Barsky S. Tumor invasion and the extracellular matrix. Lab Invest 1983;49:636-649.
Kleinman H, Jacob K. Invasion assays. Curr Protoc Cell Biol 2001;Chapter 12:Unit 12.2.
Jodele S, Blavier L, Yoon J, DeClerck Y. Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev 2006;25:35-43.
Arribas J, Bech-Serra J, Santiago-Josefat B. ADAMs, cell migration and cancer. Cancer Metastasis Rev 2006;25:57-68.
Auf Dem Keller U, Doucet A, Overall C. Protease research in the era of systems biology. Biol Chem 2007;388:1159-1162.
Hinck L. and Silberstein G. Key stages in mammary gland development: The mammary end bud as a motile organ. Breast Cancer Res 2005;7:245-251.
Chatterjee S, Zetter B. Cancer biomarkers: knowing the present and predicting the future. Future Oncol 2005;1:37-50.
Björklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta. 2005;1755:37-69.
Hofmann U, Houben R, Bröcker E, Becker J. Role of matrix metalloproteinases in melanoma cell invasion. Biochimie 2005;87:307-314.
Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 2004;23:101-117.
Fingleton B. Matrix metalloproteinases: roles in cancer and metastasis. Front Biosci 2006;11:479-491.
Folgueras A, Pendás A, Sánchez L, López-Otín C. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. 1: Int J Dev Biol 2004;48:411-424.
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2:161-174.
Hojilla C, Wood G, and Khokha R. Inflammation and breast cancer. Metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cáncer. Breast Cancer Res 2008;10:1-9.
Chirco R, Liu X, Jung K, Kim H. Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 2006;25:99-113.
Turpeenniemi-Hujanen T. Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie 2005;87:287-97.
Balbín M, Fueyo A, Tester A, Pendás A, Pitiot A, Astudillo A, et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 2003;35:252-257.
Mook O, Frederiks W, Van Noorden C. The role of gelatinases in colorectal cancer progression and metastasis. Biochim Biophys Acta 2004;1705:69-89.
Nakajima M, Welch D, Wynn D, Tsuruo T, Nicolson G. Serum and plasma M(r) 92,000 progelatinase levels correlate with spontaneous metastasis of rat 13762NF mammary adenocarcinoma. Cancer Res 1993;53:5802-5807.
Jumper C, Cobos E, Lox C. Determination of the serum matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in patients with either advanced small-cell lung cancer or non-small-cell lung cancer prior to treatment. Respir Med 2004;98:173-177.
Wu Z, Wu Q, Yang J, Wang H, Ding X, Yang F, et al. Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. Int J Cancer 2008;122:2050-2056.
Acuff H, Carter K, Fingleton B, Gorden D, Matrisian L. Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res 2006;66:259-266.
Deryugina E, Zijlstra A, Partridge J, Kupriyanova T, Madsen M, Papagiannakopoulos T, et al. Unexpected effect of matrix metalloproteinase downregulation on vascular intravasation and metastasis of human fibrosarcoma cells selected in vivo for high rates of dissemination. Cancer Res 2005;65:10959-10969.
López-Otín C, Matrisian L. Emerging roles of proteases in tumour suppression. Nat Rev Cancer 2007;7:800-808.
Sloane B, Honn K, Sadler J, Turner W, Kimpson J, Taylor J. Cathepsin B activity in B16 melanoma cells: a possible marker for metastatic potential. Cancer Res 1982;42:980-986.
Chinni SR, Falchetto R, Gercel-Taylor C, Shabanowitz J, Hunt DF, Taylor DD. Humoral immune responses to cathepsin D and glucose-regulated protein 78 in ovarian cancer patients. Clin Cancer Res 1997;3:1557-1564.
Palermo C, Joyce J. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci 2008;29:22-28.
Husmann K, Muff R, Bolander ME, Sarkar G, Born W, Fuchs B. Cathepsins and osteosarcoma: Expression analysis identifies cathepsin K as an indicator of metastasis. Mol Carcinog 2008;47:66-73.
Walz M, Kellermann S, Bylaite M, Andrée B, Rüther U, Paus R, et al. Expression of the human Cathepsin L inhibitor hurpin in mice: skin alterations and increased carcinogenesis. Exp Dermatol 2007;16:715-723.
Goulet B, Sansregret L, Leduy L, Bogyo M, Weber E, Chauhan S,et al. Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Mol Cancer Res 2007;5:899-907.
Joseph L, Chang L, Stamenkovich D, Sukhatme V. Complete nucleotide and deduced amino acid sequences of human and murine preprocathepsin L. An abundant transcript induced by transformation of fibroblasts. J Clin Invest 1988;81:1621-1629.
Shuja S, Murnane M. Marked increases in cathepsin B and L. An abundant transcript induced by transformation of fibroblasts. J Clin Invest 1988;81:6121-6129.
Foucré D, Bouchet C, Hacène K, Pourreau-Schneider N, Gentile A, Martin PM, et al. Relationship between cathepsin D, urokinase, and plasminogen activator inhibitors in malignant vs benign breast tumours. Br J Cancer 1991;64:926-932.
Svatek R, Karam J, Karakiewicz P, Gallina A, Casella R, Roehrborn C, et al. Role of urinary cathepsin B and L in the detection of bladder urothelial cell carcinoma. J Urol 2008;179:478-484.
Kobayashi H, Schmitt M, Goretzki L, Chucholowski N, Calvete J, Kramer M, et al. Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (Pro-uPA). J Biol Chem 1991;266:5147-5152.
Falcón O, Chirino R, León L, López-Bonilla A, Torres S, Fernández L, et al. Low levels of cathepsin D are associated with a poor prognosis in endometrial cancer. British Journal of Cancer 1999;79:570-576.
Chauhan S, Goldstein L, Gottesman M. Expression of cathepsin L in human tumors. Cancer Res 1991;51:1478-1481.
Goretzki L, Schmitt M, Mann K, Calvete J, Chucholowski N, Kramer M, et al. Effective activation of the proenzyme form of the urokinase-type plasminogen activator (pro-uPA) by the cysteine protease cathepsin L. FEBS Lett 1992;297:112-118.
Benitez-Bribiesca L, Villanueva C, Freyne R, Amezcua J, De la Huerta R, Luevano E, et al. Serum proteinase levels platelet functional and morphological alterations in patients with cervix uteri carcinoma. Correlation with the degree of progession of the malignancy. Arch Invest Med 1986;17:211-242.
Van der Stappen J, Williams A, Maciewicz R, Paraskeva C. Activation of cathepsin B, secreted by a colorectal cancer cell line requires low pH and is mediated by cathepsin D. Int J Cancer 1996;67:547-554.
Sitabkhan Y, Frankfater A. Differences in the expression of cathepsin B in B16 melanoma metastatic variants depend on transcription factor Sp1. DNA Cell Biol 2007;26:673-682.
Rochefort H, Capony F, Garcia M. Cathepsin D: a protease involved in breast cancer metastasis. Cancer Metastasis Rev 1990;9:321-331.
Rochefort H, Capony F, Garcia M, Cavaillès V, Freiss G, Chambon M, et al. Estrogen-induced lysosomal proteases secreted by breast cancer cells: a role in carcinogenesis? J Cell Biochem 1987;35:17-29.
Bradley W, Lima P, Rodgers L, Blomquist C, Downs L. Endometrial carcinoma expresses an increased cathepsin B/D ratio. Gynecol Oncol 2008;108:84-89.
Kristensen G, Holm R, Abeler V, Tropé C. Evaluation of the prognostic significance of cathepsin D, epidermal growth factor receptor, and c-erbB-2 in early cervical squamous cell carcinoma. An immunohistochemical study. Cancer 1996;78:433-440.
Rochefort H. Cathepsin D in breast cancer: a tissue marker associated with metastasis. Eur J Cancer 1992;28A:1780-1783.
Johnson M, Torri J, Lippman M, Dickson R. The role of cathepsin D in the invasiveness of human breast cancer cells. Cancer Res 1993;53:873-877.
Garcia M, Platet N, Liaudet E, Laurent V, Derocq D, Brouillet J, et al. Biological and clinical significance of cathepsin D in breast cancer metastasis. Stem Cells 1996;14:642-650.
Jiang W, Puntis M, Hallett M. Molecular and cellular basis of cancer invasion and metastasis: implications for treatment. Br J Surg 1994;81:1576-1590.
Merseburger A, Hennenlotter J, Stenzl A, Beger G, Rinnab L, Kuczyk M, et al. Cathepsin D serum levels are not a valid serum marker in renal cell carcinoma. Urol Int 2007;79:41-43.
Kawakubo T, Okamoto K, Iwata J, Shin M, Okamoto Y, Yasukochi A, et al. Cathepsin E prevents tumor growth and metastasis by catalyzing the proteolytic release of soluble TRAIL from tumor cell surface. Cancer Res 2007; 67:10869-10878.
Shin M, Kadowaki T, Iwata J, Kawakubo T, Yamaguchi N, Takii R, et al. Association of cathepsin E with tumor growth arrest through angiogenesis inhibition and enhanced immune responses. Biol Chem 2007;388:1173-1181.
Podgorski I, Linebaugh B, Sloane B. Cathepsin K in the bone microenvironment: link between obesity and prostate cancer? Biochem Soc Trans 2007;35:701-703.
Le Gall C, Bellahcène A, Bonnelye E, Gasser J, Castronovo V, Green J, et al. A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden. Cancer Res 2007;67:9894-9902.
Fröhlich E, Schlagenhauff B, Möhrle M, Weber E, Klessen C, Rassner G. Activity, expression, and transcription rate of the cathepsins B, D, H, and L in cutaneous malignant melanoma. Cancer 2001;91:972-982.
Ishibashi O, Mori Y, Kurokawa T, Kumegawa M. Breast cancer cells express cathepsins B and L but not cathepsins K or H. Cancer Biochem Biophys 1999;17:69-78.
Wang B, Sun J, Kitamoto S, Yang M, Grubb A, Chapman HA, Kalluri R, Shi GP. Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem 2006;281:6020-6029.
Järvinen M, Rinne A, Hopsu-Havu V. Human cystatins in normal and diseased tissues—a review. Acta Histochem 1987;82:5-18.
Jiang W, Hallett M, Puntis M. Hepatocyte growth factor/scatter factor, liver regeneration and cancer metastasis. Br J Surg 1993;80:1368-1373.
Lah T, Kokalj-Kunovar M, Drobnic-Kosorok M, Babnik J, Golouh R, Vrhovec I, et al. Cystatins and cathepsins in breast carcinoma. Biol Chem Hoppe Seyler 1992;373:595-604.
Lah T, Kokalj-Kunovar M, Strukelj B, Pungercar J, Barlic-Maganja D, Drobnic-Kosorok M, et al. Stefins and lysosomal cathepsins B, L and D in human breast carcinoma. Int J Cancer 1992;50:36-44.
Sheahan K, Shuja S, Murnane M. Cysteine protease activities and tumor development in human colorectal carcinoma. Cancer Res 1989;49:3809-3814.
Shpacovitch V, Feld M, Hollenberg M, Luger T, Steinhoff M. Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity. J Leukoc Biol 2008;83:1309-1322.
Gravilovicc J, Murphy G. The role of plasminogen activator in cell-mediated collagen degradation. Cell Biol Int 1989;13:367-375.
Ichinose A, Fujikawa K, Suyama T. The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin. J Biol Chem 1986;261:3486-3489.
Liotta L, Goldfarb R, Brundage R, Siegal G, Terranova V, Garbisa S. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res 1981;41:4629-4636.
Summaria L, Hsiem B and Robbins K. The specific Mechanism of Activation of Human Plasminogen to Plasmin. The Journal of Biological Chemistry 1967; 242:4279-4283.
Dass K, Ahmad A, Azmi A, Sarkar S, Sarkar F. Envolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 2008;34:122-136.
Bachmann F, Kruithof I. Tissue plasminogen activator: chemical and physiological aspects. Semin Thromb Hemost 1984;10:6-17.
Gething M, Adler B, Boose J, Gerard R, Madison E, McGookey D, et al. Variants of human tissue-type plasminogen activator that lack specific structural domains of the heavy chain. EMBO J 1988;7:2731-2740.
Hsueh A, Liu Y, Cajander S, Peng X, Dahl K, Kristensen P, et al. Gonadotropin- releasing hormone induces ovulation in hypophysectomized rats: studies on ovarian tissue-type plasminogen activator activity, messenger ribonucleic acid content, and cellular localization. Endocrinology 1988;122:1486-1495.
Verrall S, Seeds N. Characterization of 125I-tissue plasminogen activator binding to cerebellar granule neurons. J Cell Biol 1989;109:265-271.
Hajjar K, Hamel N. Identification and characterization of human endothelial cell membrane binding sites for tissue plasminogen activator and urokinase. J Biol Chem 1990;265:2908-2916.
Saito K, Nagashima M, Iwata M, Hamada H, Sumiyoshi K, Takada Y, et al. The concentration of tissue plasminogen activator and urokinase in plasma and tissues of patients with ovarian and uterine tumors. Thromb Res 1990;58:355-366.
Li Y, Cozzi P. Targeting uPA/uPAR in prostate cancer. Cancer Treat Rev 2007;33:521-527.
Shiomi H, Eguchi Y, Tani T, Kodama M, Hattori T. Cellular distribution and clinical value of urokinase-type plasminogen activator, its receptor, and plasminogen activator inhibitor-2 in esophageal squamous cell carcinoma. Am J Pathol 2000;156:567-575.
Gottesman M. The role of proteases in cancer. Sem Cancer Biol 1990;1:97-100.
DeClerck YA, Laug WE. Cooperation between matrix metalloproteinases and the plasminogen activator-plasmin system in tumor progression. Enzyme Protein 1996;49:72-84.
Saksela O, Rifkin D. Cell-associated plasminogen activation: regulation and physiological functions. Annu Rev Cell Biol 1988;4:93-126.
Shi Z, Stack M. Urinary-type plasminogen activator (uPA) and its receptor (uPAR) in squamous cell carcinoma of the oral cavity. Biochem J 2007;407:153-159.
Grøndahl-Hansen J, Christensen I, Rosenquist C, Brünner N, Mouridsen HT, Danø K, et al. High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res 1993;53:2513-2521.
Ito H, Yonemura Y, Fujita H, Tsuchihara K, Kawamura T, Nojima N, et al. Prognostic relevance of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitors PAI-1 and PAI-2 in gastric cancer. Virchows Arch 1996;427:487-496.
Schmitt M, Wilhelm O, Jänicke F, Magdolen V, Reuning U, Ohi H, et al. Urokinase-type plasminogen activator (uPA) and its receptor (CD87): a new target in tumor invasion and metastasis. J Obstet Gynaecol 1995;21:151-165.
Biermann J, Holzscheiter L, Kotzsch M, Luther T, Kiechle-Bahat M, Sweep FC, et al. Quantitative RT-PCR assays for the determination of urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 mRNA in primary tumor tissue of breast cancer patients: comparison to antigen quantification by ELISA. Int J Mol Med 2008;21:251-259.
Wolfsberg T, Primakoff P, Myles D, White J. ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J Cell Biol 1995;131:275-278.
Valkovskaya N, Kayed H, Felix K, Hartmann D, Giese NA, Osinsky SP, et al. ADAM8 expression is associated with increased invasiveness and reduced patient survival in pancreatic cancer. J Cell Mol Med 2007;11:1162-1174.
Naus S, Richter M, Wildeboer D, Moss M, Schachner M, Bartsch J. Ectodomain shedding of the neural recognition molecule CHL1 by the metalloprotease- disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death. J Biol Chem. 2004;279:16083-16090.
Yamamoto S, Higuchi Y, Yoshiyama K, Shimizu E, Kataoka M, Hijiya N, Matsuura K. ADAM family proteins in the immune system. Immunol Today. 1999;20:278-84.
Najy A, Day K, Day M. ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction. Cancer Res 2008;68:1092-1099.
Gee J, Knowlden J. ADAM metalloproteases and EGFR signalling. Breast Cancer Res 2003;5:223-224.
Llamazares M, Obaya A, Moncada-Pazos A, Heljasvaara R, Espada J, López-Otín C, et al. The ADAMTS12 metalloproteinase exhibits anti-tumorigenic properties through modulation of the Ras-dependent ERK signalling pathway. J Cell Sci 2007;120:3544-3552.
Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989;339:58-61.
Carmeliet P, Jain R. Angiogenesis in cancer and other diseases. Nature 2000;407:249-257.
Yancopoulos G, Davis S, Gale N, Rudge J, Wiegand S, Holash J. Vascularspecific growth factors and blood vessel formation. Nature. 2000;407:242-248.
Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999;85:221-228.
Moore M. Putting the neo into neoangiogenesis. J Clin Invest 2002;109:313-315.
Gehling U, Ergün S, Schumacher U, Wagener C, Pantel K, Otte M, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000;95:3106-3112.
Davidoff A, Ng C, Brown P, Leary M, Spurbeck WW, Zhou J, et al. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res 2001;7:2870-2879.
Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001;7:1194-1201.
Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie C. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002;109:337-346.
Carmeliet P, Luttun A. The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb Haemost 2001;86:289-297.
Rafii S, Lyden D, Benezra R, Hattori K, Heissig B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2002;2:826-835.
Roche W. Mast cells and tumour angiogenesis: the tumor-mediated release of an endothelial growth factor from mast cells. Int J Cancer 1985;36:721-728.
Chantrain CF, Henriet P, Jodele S, Emonard H, Feron O, Courtoy PJ, DeClerck YA, Marbaix E. Mechanisms of pericyte recruitment in tumour angiogenesis: a new role for metalloproteinases. Eur J Cancer. 2006;42:310-8.
Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005;438:937-945.
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353-364.
Bergers G, Benjamin L. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3:401-410.
Hansen S, Grabau D, Sørensen F, Bak M, Vach W, Rose C. Department of Oncology, Odense University Hospital, Odense University, Denmark. Vascular grading of angiogenesis: prognostic significance in breast cancer. Br J Cancer 2000;82:339-347.
Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002;2:727-739.
Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, Harper J, Tamvakopoulos G, Moses MA. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci USA 2000;97:3884-3889.
Zijlstra A, Aimes R, Zhu D, Regazzoni K, Kupriyanova T, Seandel M, et al. Collagenolysis-dependent angiogenesis mediated by matrix metalloproteinase-13 (collagenase-3). J Biol Chem 2004;279:27633-27645.
Rundhaug J. Matrix metalloproteinases and angiogenesis. J Cell Mol Med 2005;9:267-285.
Handsley M, Edwards D. Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 2005;115:849-860.
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182-1186.
Carmeliet P. Review article Angiogenesis in life, disease and medicine. Nature 2005;438:932-936.
Ferrara N and Kerbel R. Angiogenesis as a therapeutic target. Nature 2005;438:967-974.
Overall C, Kleifeld O. Tumour microenvironment-opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 2006;6:227-239.
Baker A, Edwards D, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 2002;115:3719-3727.
Palermo C, Joyce J. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci 2008;29:22-28.
Sternlicht M, Lochter A, Sympson C, Huey B, Rougier J, Gray J, et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 1999;98:137-146.
Savinov A, Remacle A, Golubkov V, Krajewska M, Kennedy S, Duffy M, et al. Matrix metalloproteinase 26 proteolysis of the NH2-terminal domain of the estrogen receptor beta correlates with the survival of breast cancer patients. Cancer Res 2006;66:2716-2724.
Balbín M, Fueyo A, Tester A, Pendás A, Pitiot A, Astudillo A, et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 2003;35:252-257.
Montel V, Kleeman J, Agarwal D, Spinella D, Kawai K, Tarin D. Altered metastatic behavior of human breast cancer cells after experimental manipulation of matrix metalloproteinase 8 gene expression. Cancer Res 2004;64:1687-1694.
Gorrin-Rivas M, Arii S, Furutani M, Mizumoto M, Mori A, Hanaki K, et al. Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin Cancer Res 2000;6:1647-1654.
Dong, Z., Kumar, R., Yang, X. & Fidler, I. J. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 1997;88:801-810.
Gorrin-Rivas M, Arii S, Mori A, Takeda Y, Mizumoto M, Furutani M, et al. Implications of human macrophage metalloelastase and vascular endothelial growth factor gene expression in angiogenesis of hepatocellular carcinoma. Ann Surg 2000;231:67-73.
Acuff H, Sinnamon M, Fingleton B, Boone B, Levy S, Chen X, et al. Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small cell lung cancer. Cancer Res 2006;66:7968-7975.
Houghton A, Grisolano J, Baumann M, Kobayashi D, Hautamaki R, Nehring L, et al. Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 2006;66:6149-6155.
Yang W, Arii S, Gorrin-Rivas M, Mori A, Onodera H, Imamura M. Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. Cancer 2001;91:1277-1283.
Hofmann H, Hansen G, Richter G, Taege C, Simm A, Silber R, et al. Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clin Cancer Res 2005;11:1086-1092.
Kerkelä E, Ala-aho R, Klemi P, Grénman S, Shapiro S, Kähäri V, et al. Metalloelastase (MMP-12) expression by tumour cells in squamous cell carcinoma of the vulva correlates with invasiveness, while that by macrophages predicts better outcome. J Pathol 2002;198:258-269.
Zhang B, Cao X, Liu Y, Cao W, Zhang F, Zhang S, et al. Tumor-derived matrix metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer. BMC Cancer 2008;8:83-90.
Uría J, López-Otín C. Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res 2000;60:4745-4751.
Savinov A, Remacle A, Golubkov V, Krajewska M, Kennedy S, Duffy MJ, et al. Matrix metalloproteinase 26 proteolysis of the NH2-terminal domain of the estrogen receptor beta correlates with the survival of breast cancer patients. Cancer Res 2006;66:2716-2724.
Sternlicht M, Lochter A, Sympson C, Huey B, Rougier J, Gray J, et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 1999;98:137-146.
McCawley L, Crawford H, King L, Mudgett J, Matrisian L. A protective role for matrix metalloproteinase-3 in squamous cell carcinoma. Cancer Res 2004;64:6965-6972.
Witty J, Lempka T, Coffey R, Matrisian L. Decreased tumor formation in 7,12-dimethylbenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial cell apoptosis. Cancer Res 1995;55:1401-1406.
Scorilas A, Karameris A, Arnogiannaki N, Ardavanis A, Bassilopoulos P, Trangas T, et al. Overexpression of matrix-metalloproteinase-9 in human breast cancer: a potential favourable indicator in node-negative patients. Br J Cancer 2001;84:1488-1496.
Takeha S, Fujiyama Y, Bamba T, Sorsa T, Nagura H, Ohtani H. Stromal expression of MMP-9 and urokinase receptor is inversely associated with liver metastasis and with infiltrating growth in human colorectal cancer: a novel approach from immune/inflammatory aspect. Jpn J Cancer Res 1997;88:72-81.
Pozzi A, LeVine W, Gardner H. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 2002;21:272-281.
Hamano Y, Zeisberg M, Sugimoto H, Lively J, Maeshima Y, Yang C, et al. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 2003;3:589-601.
Andarawewa K, Boulay A, Masson R, Mathelin C, Stoll I, Tomasetto C, et al. Dual stromelysin-3 function during natural mouse mammary tumor virus-ras tumor progression. Cancer Res 2003;63:5844-5849.
Pendás A, Folgueras A, Llano E, Caterina J, Frerard F, Rodríguez F, et al. Diet-induced obesity and reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice. Mol Cell Biol 2004;24:5304-5313.
Jost M, Folgueras A, Frérart F, Pendas A, Blacher S, Houard X, et al. Earlier onset of tumoral angiogenesis in matrix metalloproteinase-19-deficient mice. Cancer Res 2006;66:5234-5241.
Iruela-Arispe M, Carpizo D, Luque A. ADAMTS1: a matrix metalloprotease with angioinhibitory properties. Ann N Y Acad Sci 2003;995:183-190.
Kuno K, Bannai K, Hakozaki M, Matsushima K, Hirose K. The carboxylterminal half region of ADAMTS-1 suppresses both tumorigenicity and experimental tumor metastatic potential. Biochem Biophys Res Commun 2004;319:1327-1333.
Liu Y, Xu Y, Yu Q. Full-length ADAMTS-1 and the ADAMTS-1 fragments display pro- and antimetastatic activity, respectively. Oncogene 2006;25:2452-2467.
Luque A, Carpizo D, Iruela-Arispe M. ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J Biol Chem 2003;278:23656-2365.
Lee N, Sato M, Annis D, Loo J, Wu L, Mosher D, et al. ADAMTS1 mediates the release of antiangiogenic polypeptides from TSP1 and 2. EMBO J 2006;25:5270-5283.
Porter S, Scott S, Sassoon E, Williams M, Jones J, Girling A, et al. Dysregulated expression of adamalysin-thrombospondin genes in human breast carcinoma. Clin Cancer Res 2004;10:2429-2440.
Rocks N, Paulissen G, Quesada F, Polette M, Gueders M, Munaut C, et al. Expression of a disintegrin and metalloprotease (ADAM and ADAMTS) enzymes in human non-small-cell lung carcinomas (NSCLC). Br J Cancer 2006;94:724-730.
Lind G, Kleivi K, Meling G, Teixeira M, Thiis-Evensen E, Rognum T, et al. ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis. Cell Oncol 2006;28:259-272.
Dunn J, Panutsopulos D, Shaw M, Heighway J, Dormer R, Salmo E, et al. METH-2 silencing and promoter hypermethylation in NSCLC. Br J Cancer 2004;91:1149-1154.
Dunn J, Reed J, du Plessis D, Shaw E, Reeves P, Gee A, et al. Expression of ADAMTS-8, a secreted protease with antiangiogenic properties, is downregulated in brain tumours. Br J Cancer 2006;94:1186-1193.
Lo P, Leung A, Kwok C, Cheung W, Ko J, Yang L, et al. Identification of a tumor suppressive critical region mapping to 3p14.2 in esophageal squamous cell carcinoma and studies of a candidate tumor suppressor gene, ADAMTS9. Oncogene 2007;26:148-157.
Sjöblom T, Jones S, Wood L, Parsons D, Lin J, Barber T, et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006;314:268-274.
Jin H, Wang X, Ying J, Wong A, Li H, Lee H, et al. Epigenetic identification of ADAMTS18 as a novel 16q23.1 tumor suppressor frequently silenced in esophageal, nasopharyngeal and multiple other carcinomas. Oncogene 2007;26:7490-7498.