2009, Number 1
<< Back Next >>
Vet Mex 2009; 40 (1)
Effect of porcine reproductive and respiratory syndrome (PRRS) virus on porcine monocyte-derived dendritic cells
Flores-Mendoza L, Silva-Campa E, Reséndiz M, Mata-Haro V, Osorio FA, Hernández J
Language: English/Spanish
References: 48
Page: 39-54
PDF size: 547.62 Kb.
ABSTRACT
Dendritic cells (DC) are considered the most important antigen presenting cells of the immune system. Its anatomical location (skin, mucosa and peripheral blood), the expression of receptors to recognize pathogens, the expression of co-stimulatory molecules (CD80/86), the major histocompatibility complex (MHC) class I and II, and the production of cytokines (such as IFN-α, IL-10, IL-12) confers to these cells the characteristic to regulate innate and adaptive immune responses. The objective of this work was to evaluate the effects of the porcine reproductive and respiratory virus (PRRS) in mature DC. DC were generated from blood monocytes using IL-4 and GM-CSF and were stimulated with lipopolysaccharide (LPS) to induce their maturation. The results show that the expression of CD14 and CD172a molecules in infected DC was not affected, while MHC II and CD80/86 expression was diminished. This decrease seems to affect the allogenic proliferation of lymphocytes stimulated with infected DC. On the other hand, the virus increases mRNA expression of IL-10 and TNF-α, and diminishes that for IL-1β and IL-6. The results obtained could explain, in part, the immunophatology of the disease.
REFERENCES
BANCHEREAU J, STEINMAN RM. Dendritic cells and the control of immunity. Nature 1998;392:245-252.
MAKALA LH, NAGASAWA H. Dendritic cells: a specialized complex system of antigen presenting cells. J Vet Med Sci 2002;64:181-193.
PAILLOT R, LAVAL F, AUDONNET J, ANDREONI C, JUILLARD V. Functional and phenotypic characterization of distinct porcine dendritic cells derived from peripheral blood monocytes. Immunology 2001;102:396-404.
RANDOLPH GJ, ANGELI V, SWARTZ MA. Dendriticcell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 2005;5:617-628.
GUERMONPREZ P, VALLADEAU J, ZITVOGEL L, THERY C, AMIGORENA S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002;20:621-667.
FOSS DL, BENNAARS AM, PENNELL CA, MOODY MD, MURTAUGH MP. Differentiation of porcine dendritic cells by granulocyte-macrophage colony-stimulating factor expressed in Pichia pastoris. Vet Immunol Immunopathol 2003;91:205-215.
HACKSTEIN H, THOMSON AW. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol 2004;4:24-34.
BANCHEREAU J, PALUCKA AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005;5:296-306.
DEGLI-ESPOSTI MA, SMYTH MJ. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 2005;5:112-124.
QI H, EGEN JG, HUANG AY, GERMAIN RN. Extrafollicular activation of lymph node B cells by antigenbearing dendritic cells. Science 2006;312:1672-1676.
KOKA R, BURKETT P, CHIEN M, CHAI S, BOONE DL, MA A. Cutting edge: murine dendritic cells require IL-15R alpha to prime NK cells. J Immunol 2004;173:3594-3598.
LUDWIG IS, GEIJTENBEEK TB, VAN KOOYK Y. Two way communication between neutrophils and dendritic cells. Curr Opin Pharmacol 2006;6:408-414.
JOHANSSON E, DOMEIKA K, BERG M, ALM GV, FOSSUM C. Characterization of porcine monocyte-derived dendritic cells according to their cytokine profile. Vet Immunol Immunopathol 2003;91:183-197.
THURNHER M, ZELLE-RIESER C, RAMONER R, BARTSCH G, HOLTL L. The disabled dendritic cell. Faseb J 2001;15:1054-1061.
POLLARA G, KWAN A, NEWTON PJ, HANDLEY ME, CHAIN BM, KATZ DR. Dendritic cells in viral pathogenesis: protective or defective? Int J Exp Pathol 2005;86:187-204.
KLAGGE IM, TER MEULEN V, SCHNEIDERSCHAULIES S. Measles virus-induced promotion of dendritic cell maturation by soluble mediators does not overcome the immunosuppressive activity of viral glycoproteins on the cell surface. Eur J Immunol 2000;30:2741-2750.
SALIO M, CELLA M, SUTER M, LANZAVECCHIA A. Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 1999;29:3245-3253.
HO LJ, WANG JJ, SHAIO MF, KAO CL, CHANG DM, HAN SW et al. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol 2001;166:1499-1506.
LAMONTAGNE L, PAGE C, LAROCHELLE R, LONGTIN D, MAGAR R. Polyclonal activation of B cells occurs in lymphoid organs from porcine reproductive and respiratory syndrome virus (PRRSV)-infected pigs. Vet Immunol Immunopathol 2001;82:165-182.
VAN REETH K, NAUWYNCK H, PENSAERT M. Clinical effects of experimental dual infections with porcine reproductive and respiratory syndrome virus followed by swine influenza virus in conventional and colostrumdeprived pigs. J Vet Med B Infect Dis Vet Public Health 2001;48:283-292.
WILLS RW, DOSTER AR, GALEOTA JA, SUR JH, OSORIO FA. Duration of infection and proportion of pigs persistently infected with porcine reproductive and respiratory syndrome virus. J Clin Microbiol 2003;41:58-62.
LOVING CL, BROCKMEIER SL, MA W, RICHT JA, SACCO RE. Innate cytokine responses in porcine macrophage populations: evidence for differential recognition of double-stranded RNA. J Immunol 2006;177:8432-8439.
CHARERNTANTANAKUL W, PLATT R, ROTH JA. Effects of porcine reproductive and respiratory syndrome virus-infected antigen-presenting cells on T cell activation and antiviral cytokine production. Viral Immunol 2006;19:646-661.
WANG X, EATON M, MAYER M, LI H, HE D, NELSON E et al. Porcine reproductive and respiratory syndrome virus productively infects monocyte-derived dendritic cells and compromises their antigen-presenting ability. Arch Virol 2007;152:289-303.
ALLENDE R, LEWIS TL, LU Z, ROCK DL, KUTISH GF, ALI A et al. North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J Gen Virol 1999;80 ( Pt 2):307-315.
HERNANDEZ J, GARFIAS Y, NIETO A, MERCADO C, MONTANO LF, ZENTENO E. Comparative evaluation of the CD4+CD8+ and CD4+CD8- lymphocytes in the immune response to porcine rubulavirus. Vet Immunol Immunopathol 2001;79:249-259.
CARRASCO CP, RIGDEN RC, SCHAFFNER R, GERBER H, NEUHAUS V, INUMARU S et al. Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology 2001;104:175-184.
HERNANDEZ J, REYES-LEYVA J, ZENTENO R, RAMIREZ H, HERNANDEZ-JAUREGUI P, ZENTENO E. Immunity to porcine rubulavirus infection in adult swine. Vet Immunol Immunopathol 1998;64:367-381.
MIRANDA DE CARVALHO C, BONNEFONT-REBEIX C, RIGAL D, CHABANNE L. Dendritic cells in different animal species: an overview. Pathol Biol (Paris) 2006;54:85-93.
CARRASCO CP, RIGDEN RC, VINCENT IE, BALMELLI C, CEPPI M, BAUHOFER O et al. Interaction of classical swine fever virus with dendritic cells. J Gen Virol 2004;85:1633-1641.
GUZYLACK-PIRIOU L, PIERSMA S, MCCULLOUGH K, SUMMERFIELD A. Role of natural interferonproducing cells and T lymphocytes in porcine monocyte- derived dendritic cell maturation. Immunology 2006;118:78-87.
RAYMOND CR, WILKIE BN. Toll-like receptor, MHC II, B7 and cytokine expression by porcine monocytes and monocyte-derived dendritic cells in response to microbial pathogen-associated molecular patterns. Vet Immunol Immunopathol 2005;107:235-247.
SUMMERFIELD A, HORN MP, LOZANO G, CARRASCO CP, ATZE K, MCCULLOUGH K. C-kit positive porcine bone marrow progenitor cells identified and enriched using recombinant stem cell factor. J Immunol Methods 2003;280:113-123.
VINCENT IE, CARRASCO CP, GUZYLACK-PIRIOU L, HERRMANN B, MCNEILLY F, ALLAN GM et al. Subset-dependent modulation of dendritic cell activity by circovirus type 2. Immunology 2005;115:388-398.
CEPPI M, DE BRUIN MG, SEUBERLICH T, BALMELLI C, PASCOLO S, RUGGLI N et al. Identification of classical swine fever virus protein E2 as a target for cytotoxic T cells by using mRNA-transfected antigen-presenting cells. J Gen Virol 2005;86:2525-2534.
VINCENT IE, CARRASCO CP, HERRMANN B, MEEHAN BM, ALLAN GM, SUMMERFIELD A et al. Dendritic cells harbor infectious porcine circovirus type 2 in the absence of apparent cell modulation or replication of the virus. J Virol 2003;77:13288-13300.
FLORES-MENDOZA L. Respuesta de células dendríticas infectadas con el virus del síndrome reproductivo y respiratorio porcino (tesis de maestría). Hermosillo (Sonora) México: CIAD, A.C., 2007.
FELNEROVA D, KUDELA P, BIZIK J, HASLBERGER A, HENSEL A, SAALMULLER A et al. T cell-specifi c immune response induced by bacterial ghosts. Med Sci Monit 2004;10:BR362-370.
VERHASSELT V, BUELENS C, WILLEMS F, DE GROOTE D, HAEFFNER-CAVAILLON N, GOLDMAN M. Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. J Immunol 1997;158:2919-2925.
KURT-JONES EA, POPOVA L, KWINN L, HAYNES LM, JONES LP, TRIPP RA et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 2000;1:398-401.
BIMCZOK D, SOWA EN, FABER-ZUSCHRATTER H, PABST R, ROTHKÖTTER HJ. Site-specific expression of CD11b and SIRP (CD172a) on dendritic cells: implications for their migration patterns in the gut immune system. Eur J Immunol 2005;35 :1418–1427.
DEVITT A, MOFFATT OD, RAYKUNDALIA C, CAPRA JD, SIMMONS DL, GREGORY CD. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 1998;392:505-509.
MORROW G, SLOBEDMAN B, CUNNINGHAM AL, ABENDROTH A. Varicella-zoster virus productively infects mature dendritic cells and alters their immune function. J Virol 2003;77:4950-4959.
SAROBE P, LASARTE JJ, ZABALETA A, ARRIBILLAGA L, ARINA A, MELERO I et al. Hepatitis C virus structural proteins impair dendritic cell maturation and inhibit in vivo induction of cellular immune responses. J Virol 2003;77:10862-10871.
KAPSENBERG ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 2003;3:984-993.
FLORES-MENDOZA, L, SILVA-CAMPA E, RESENDIZ M, OSORIO FA, HERNANDEZ J. Porcine reproductive and respiratory syndrome virus infects mature porcine dendritic cells and up-regulates interleukin-10 production. Clin Vaccine Immunol 2008; 4:720-725.
XIA CQ, KAO KJ. Suppression of interleukin-12 production through endogenously secreted interleukin-10 in activated dendritic cells: involvement of activation of extracellular signal-regulated protein kinase. Scand J Immunol 2003;58:23-32.
MOORE KW, DE WAAL MALEFYT R, COFFMAN RL, O’GARRA A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683-765.