2009, Número 1
Efecto del virus del síndrome reproductivo y respiratorio porcino (PRRS) en células dendríticas de cerdo derivadas de monocitos
Flores-Mendoza L, Silva-Campa E, Reséndiz M, Mata-Haro V, Osorio FA, Hernández J
Idioma: Español/Inglés
Referencias bibliográficas: 48
Paginas: 39-54
Archivo PDF: 547.62 Kb.
RESUMEN
Las células dendríticas (DC) son las presentadoras de antígeno más importantes del sistema inmune. Su localización anatómica (piel, mucosas y sangre periférica), la expresión de receptores para reconocer patógenos, la expresión de moléculas de coestimulación (CD80/86), del complejo principal de histocompatibilidad (MHC) clases I y II, y la producción de citocinas (IFN-α, IL-10, IL-12), les confiere una característica única para regular las respuestas inmune innata y adaptativa. El objetivo de este trabajo fue evaluar el efecto del virus de síndrome reproductivo y respiratorio porcino (PRRS) en DC maduras. Se generaron células dendríticas a partir de monocitos utilizando IL-4 y GM-CSF y se estimularon con lipopolisacárido (LPS) para inducir su maduración. Los resultados muestran que la expresión de las moléculas CD14 y CD172a no se altera en las DC infectadas, mientras que la expresión de MHC II y CD80/86 se ve disminuida. Esta disminución parece afectar la proliferación alogénica de linfocitos estimulados con DC infectadas. Asimismo, el virus aumenta la expresión del ARNm de IL-10 y TNF-α, y disminuye la de IL-1β e IL-6. Lo anterior explica, en parte, la inmunopatología de la enfermedad.
REFERENCIAS (EN ESTE ARTÍCULO)
BANCHEREAU J, STEINMAN RM. Dendritic cells and the control of immunity. Nature 1998;392:245-252.
MAKALA LH, NAGASAWA H. Dendritic cells: a specialized complex system of antigen presenting cells. J Vet Med Sci 2002;64:181-193.
PAILLOT R, LAVAL F, AUDONNET J, ANDREONI C, JUILLARD V. Functional and phenotypic characterization of distinct porcine dendritic cells derived from peripheral blood monocytes. Immunology 2001;102:396-404.
RANDOLPH GJ, ANGELI V, SWARTZ MA. Dendriticcell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 2005;5:617-628.
GUERMONPREZ P, VALLADEAU J, ZITVOGEL L, THERY C, AMIGORENA S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002;20:621-667.
FOSS DL, BENNAARS AM, PENNELL CA, MOODY MD, MURTAUGH MP. Differentiation of porcine dendritic cells by granulocyte-macrophage colony-stimulating factor expressed in Pichia pastoris. Vet Immunol Immunopathol 2003;91:205-215.
HACKSTEIN H, THOMSON AW. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol 2004;4:24-34.
BANCHEREAU J, PALUCKA AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005;5:296-306.
DEGLI-ESPOSTI MA, SMYTH MJ. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 2005;5:112-124.
QI H, EGEN JG, HUANG AY, GERMAIN RN. Extrafollicular activation of lymph node B cells by antigenbearing dendritic cells. Science 2006;312:1672-1676.
KOKA R, BURKETT P, CHIEN M, CHAI S, BOONE DL, MA A. Cutting edge: murine dendritic cells require IL-15R alpha to prime NK cells. J Immunol 2004;173:3594-3598.
LUDWIG IS, GEIJTENBEEK TB, VAN KOOYK Y. Two way communication between neutrophils and dendritic cells. Curr Opin Pharmacol 2006;6:408-414.
JOHANSSON E, DOMEIKA K, BERG M, ALM GV, FOSSUM C. Characterization of porcine monocyte-derived dendritic cells according to their cytokine profile. Vet Immunol Immunopathol 2003;91:183-197.
THURNHER M, ZELLE-RIESER C, RAMONER R, BARTSCH G, HOLTL L. The disabled dendritic cell. Faseb J 2001;15:1054-1061.
POLLARA G, KWAN A, NEWTON PJ, HANDLEY ME, CHAIN BM, KATZ DR. Dendritic cells in viral pathogenesis: protective or defective? Int J Exp Pathol 2005;86:187-204.
KLAGGE IM, TER MEULEN V, SCHNEIDERSCHAULIES S. Measles virus-induced promotion of dendritic cell maturation by soluble mediators does not overcome the immunosuppressive activity of viral glycoproteins on the cell surface. Eur J Immunol 2000;30:2741-2750.
SALIO M, CELLA M, SUTER M, LANZAVECCHIA A. Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 1999;29:3245-3253.
HO LJ, WANG JJ, SHAIO MF, KAO CL, CHANG DM, HAN SW et al. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol 2001;166:1499-1506.
LAMONTAGNE L, PAGE C, LAROCHELLE R, LONGTIN D, MAGAR R. Polyclonal activation of B cells occurs in lymphoid organs from porcine reproductive and respiratory syndrome virus (PRRSV)-infected pigs. Vet Immunol Immunopathol 2001;82:165-182.
VAN REETH K, NAUWYNCK H, PENSAERT M. Clinical effects of experimental dual infections with porcine reproductive and respiratory syndrome virus followed by swine influenza virus in conventional and colostrumdeprived pigs. J Vet Med B Infect Dis Vet Public Health 2001;48:283-292.
WILLS RW, DOSTER AR, GALEOTA JA, SUR JH, OSORIO FA. Duration of infection and proportion of pigs persistently infected with porcine reproductive and respiratory syndrome virus. J Clin Microbiol 2003;41:58-62.
LOVING CL, BROCKMEIER SL, MA W, RICHT JA, SACCO RE. Innate cytokine responses in porcine macrophage populations: evidence for differential recognition of double-stranded RNA. J Immunol 2006;177:8432-8439.
CHARERNTANTANAKUL W, PLATT R, ROTH JA. Effects of porcine reproductive and respiratory syndrome virus-infected antigen-presenting cells on T cell activation and antiviral cytokine production. Viral Immunol 2006;19:646-661.
WANG X, EATON M, MAYER M, LI H, HE D, NELSON E et al. Porcine reproductive and respiratory syndrome virus productively infects monocyte-derived dendritic cells and compromises their antigen-presenting ability. Arch Virol 2007;152:289-303.
ALLENDE R, LEWIS TL, LU Z, ROCK DL, KUTISH GF, ALI A et al. North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J Gen Virol 1999;80 ( Pt 2):307-315.
HERNANDEZ J, GARFIAS Y, NIETO A, MERCADO C, MONTANO LF, ZENTENO E. Comparative evaluation of the CD4+CD8+ and CD4+CD8- lymphocytes in the immune response to porcine rubulavirus. Vet Immunol Immunopathol 2001;79:249-259.
CARRASCO CP, RIGDEN RC, SCHAFFNER R, GERBER H, NEUHAUS V, INUMARU S et al. Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology 2001;104:175-184.
HERNANDEZ J, REYES-LEYVA J, ZENTENO R, RAMIREZ H, HERNANDEZ-JAUREGUI P, ZENTENO E. Immunity to porcine rubulavirus infection in adult swine. Vet Immunol Immunopathol 1998;64:367-381.
MIRANDA DE CARVALHO C, BONNEFONT-REBEIX C, RIGAL D, CHABANNE L. Dendritic cells in different animal species: an overview. Pathol Biol (Paris) 2006;54:85-93.
CARRASCO CP, RIGDEN RC, VINCENT IE, BALMELLI C, CEPPI M, BAUHOFER O et al. Interaction of classical swine fever virus with dendritic cells. J Gen Virol 2004;85:1633-1641.
GUZYLACK-PIRIOU L, PIERSMA S, MCCULLOUGH K, SUMMERFIELD A. Role of natural interferonproducing cells and T lymphocytes in porcine monocyte- derived dendritic cell maturation. Immunology 2006;118:78-87.
RAYMOND CR, WILKIE BN. Toll-like receptor, MHC II, B7 and cytokine expression by porcine monocytes and monocyte-derived dendritic cells in response to microbial pathogen-associated molecular patterns. Vet Immunol Immunopathol 2005;107:235-247.
SUMMERFIELD A, HORN MP, LOZANO G, CARRASCO CP, ATZE K, MCCULLOUGH K. C-kit positive porcine bone marrow progenitor cells identified and enriched using recombinant stem cell factor. J Immunol Methods 2003;280:113-123.
VINCENT IE, CARRASCO CP, GUZYLACK-PIRIOU L, HERRMANN B, MCNEILLY F, ALLAN GM et al. Subset-dependent modulation of dendritic cell activity by circovirus type 2. Immunology 2005;115:388-398.
CEPPI M, DE BRUIN MG, SEUBERLICH T, BALMELLI C, PASCOLO S, RUGGLI N et al. Identification of classical swine fever virus protein E2 as a target for cytotoxic T cells by using mRNA-transfected antigen-presenting cells. J Gen Virol 2005;86:2525-2534.
VINCENT IE, CARRASCO CP, HERRMANN B, MEEHAN BM, ALLAN GM, SUMMERFIELD A et al. Dendritic cells harbor infectious porcine circovirus type 2 in the absence of apparent cell modulation or replication of the virus. J Virol 2003;77:13288-13300.
FLORES-MENDOZA L. Respuesta de células dendríticas infectadas con el virus del síndrome reproductivo y respiratorio porcino (tesis de maestría). Hermosillo (Sonora) México: CIAD, A.C., 2007.
FELNEROVA D, KUDELA P, BIZIK J, HASLBERGER A, HENSEL A, SAALMULLER A et al. T cell-specifi c immune response induced by bacterial ghosts. Med Sci Monit 2004;10:BR362-370.
VERHASSELT V, BUELENS C, WILLEMS F, DE GROOTE D, HAEFFNER-CAVAILLON N, GOLDMAN M. Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. J Immunol 1997;158:2919-2925.
KURT-JONES EA, POPOVA L, KWINN L, HAYNES LM, JONES LP, TRIPP RA et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 2000;1:398-401.
BIMCZOK D, SOWA EN, FABER-ZUSCHRATTER H, PABST R, ROTHKÖTTER HJ. Site-specific expression of CD11b and SIRP (CD172a) on dendritic cells: implications for their migration patterns in the gut immune system. Eur J Immunol 2005;35 :1418–1427.
DEVITT A, MOFFATT OD, RAYKUNDALIA C, CAPRA JD, SIMMONS DL, GREGORY CD. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 1998;392:505-509.
MORROW G, SLOBEDMAN B, CUNNINGHAM AL, ABENDROTH A. Varicella-zoster virus productively infects mature dendritic cells and alters their immune function. J Virol 2003;77:4950-4959.
SAROBE P, LASARTE JJ, ZABALETA A, ARRIBILLAGA L, ARINA A, MELERO I et al. Hepatitis C virus structural proteins impair dendritic cell maturation and inhibit in vivo induction of cellular immune responses. J Virol 2003;77:10862-10871.
KAPSENBERG ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 2003;3:984-993.
FLORES-MENDOZA, L, SILVA-CAMPA E, RESENDIZ M, OSORIO FA, HERNANDEZ J. Porcine reproductive and respiratory syndrome virus infects mature porcine dendritic cells and up-regulates interleukin-10 production. Clin Vaccine Immunol 2008; 4:720-725.
XIA CQ, KAO KJ. Suppression of interleukin-12 production through endogenously secreted interleukin-10 in activated dendritic cells: involvement of activation of extracellular signal-regulated protein kinase. Scand J Immunol 2003;58:23-32.
MOORE KW, DE WAAL MALEFYT R, COFFMAN RL, O’GARRA A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683-765.