2007, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2007; 10 (1)
Electrochemical study of cis-diferrocenylethene derivates
Ortiz-Frade L, Reyna-Cancino JA, Ruiz-Azuara L, Moreno-Esparza R, Martínez-García M, Klimova E, Altamirano M
Language: English
References: 37
Page: 21-25
PDF size: 124.86 Kb.
ABSTRACT
Ferrocene derivatives have been used in the synthesis of polymeric materials with thermal resistance and nonlinear optical properties, and in the field of supramolecular electrochemistry as redox switching receptors. For these reasons, during the past few years the electrochemical studies on ferrocenyl derivatives have been growing up. In order to characterize molecules with potential uses in the synthesis of polymeric materials and to understand its electrochemical functioning, this paper presents electrochemical studies on these chemicals: 1)
cis-diferrocenylethenes derivates (Isopropyl cis-2,3-Diferrocenylacrylate; 2)
cis-2,3-Diferrocenylacrylic Acid; 3)
cis-2,3-Diferrocenylacrylohydrazide; 4)
cis-2,3-Diferrocenylacrylic Acid Piperidide; 5)
cis-3,4-Diferrocenyl-2-methylbut-3-en-ol, and 6)
cis-1,1-Diphehyl-2,3-Diferrocenylprop-2-en-1-ol. All of the chemicals presented two oxidation processes (I-II), which were thought to be caused by the oxidation of the ferrocene groups, E
1/2(I), E
1/2(II), ΔE
1/2 (II-I). The comproportionation constant K
com was calculated. According to this value, it can be proposed that the molecules containing a carbonyl group (1-4) present larger electronic communication compared to molecules with a hydroxy group (5-6). Uv-vis espectra of all compounds in butironitrile solution were obtained. A correlation between K
com and λ max was also observed.
REFERENCES
Scott, A.F. Survey of Progress in Chemistry (Academic Press, New York, 1963) Vol. 1, p. 133.
Neuse, E.W. & Rosenberg, H. Metallocene Polymers (Marcel Dekker, Inc., New York, 1970).
Mitchell, J.B.A. Smoke reduction from burning crude oil using ferrocene and its derivatives. Combust Flame 86, 179-184 (1991).
Bonczyk, P.A. Effect of Ferrocene on soot in a prevaporized iso-octane/air diffusion flame. Combust Flame 87, 233-244. (1991).
Somasundaram, G. & Sunavala, P.D. Suppression of soot in the combustion of residual furnace oil using organometallic additives. Fuel 68, 921-927 (1989).
Zhang, J. & Megardis, C. M. Soot Suppression by Ferrocene in Laminar Ethylene/Air Nonpremixed Flames. Combust. Flame 105, 528-540 (1996).
Pittman, C.U. The Discovery of Metallocene- and Metallocene-Like Addition Polymers. Journal of Inorganic and Organometallic Polymers and Materials 15, 33-55 (2005).
Buchmeiser, M. & Schrock, R.R. Synthesis of polyenes that contain metallocenes via the living polymerization of ethynylferrocene and ethynylrutheocene. Macromolecules 28, 6642-6649 (1995).
Yang,Y., Xie, Z. & Wu, C. Novel synthesis and characterization of side-chain ferrocene-containing polymers. Macromolecules 35, 3426-3432 (2002).
Albagli, D., Bazan, G., Wrighton, M.S. & Schrock, R.R. Well-defined redox-active polymers and block copolymers prepared by living ring-opening methatesis polymerization. J. Am. Chem. Soc. 114, 4150-4158 (1992).
Morikita, T., Maruyama, T., Yamamoto, T., Kubota, K. & Katada, M. New type of polymer containing 1,1-ferrocenediyl unit in l-conjugated main chain. Preparation and redox behavior. Inorg. Chim. Acta 269, 310-312 (1998).
Laine, R.M. Inorganic and Organometallic Polymers with Special Properties (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992).
Najafi-Mohajeri, N., Nelson, G.L. & Benrashid, R. Synthesis and properties of new ferrocene-modified urethane block coplymers. J. Appl. Polym. Sc. 76, 1847-1856 (2000).
Long, N.J. Organometallyc compounds for nonliear optics. Angew. Chem. Int. Ed. Engl. 34, 21-38 (1995).
Wright, M.E., Toplikar, E. G., Lackritz, H.S. & Kerney, J.T. Organometallyc Nonlinear optical polymers. Organometallic main-chain, side-chain, and guest-host polymers: A study of their orientation and relaxation using second harmonic generation, Macromolecules 27, 3016-3022 (1994).
Lin, Z. Organometallic polymers with ferromagnetic properties. Adv. Mater. 11, 1153-1154 (1999).
Ingham, S.L., Khan, M.S., Lewis, J., Long, N.J. & Raithby, P.R. Synthesis and characterisation of monomeric, dimeric and polymeric ferrocenylacetylides. Crystal structure of 1,1'-bis(phenylethynyl)ferrocene. 470, 153-159 (1994)
Abd-Alla, M.M., Al-Zohry, M.F., Aly, K.I. & Abd-Wahab, M.M. Arylidene polymers. XVIII. Synthesis and thermal behavior of organometallic arylidene polyesters containing ferrocene derivatives in the main chain. J. Appl. Polym. Sci. 47, 323-329 (1993).
Gonsalves, K.E., Zhan-Ru, L. & Rausch, M.D. Ferrocene-Containing Polyamides and Polyureas. J. Am. Chem. Soc. 106, 3862-3863 (1994).
Kishore, K., Kannan, P. & Iyanar, K. Synthesis, characterization, and fire retardancy of ferrocene containing polyphosphate esters. J. Polym. Sci. Part. A Polym. Chem. 29, 1039-1044 (1991).
Gonsalves, K.E. & Rausch, M.D. Segmented poly(ether urethane) films containing ferrocene units in the hard segments. J. Polym. Sci. Part A. Polym. Chem. 24, 1599-1607 (1986).
Casado, C.M., Morán, M., Losada, J. & Cuadrado, I. Siloxane and Organosilicon Dimers, Monomers, and Polymers with Amide-Linked Ferrocenyl Moieties. Synthesis, Characterization, and Redox Properties, Inorg. Chem., 34, 1668-1680 (1995).
Casado, C.M., et al. Redox-active ferrocenyl dendrimers and polymers in solution and immobilised on electrode surfaces. J. Coord. Chem. Rev. 185-186, 53-80 (1999).
Beer, P.D., Gale, P.A. & Chen, G.Z. Mechanisms of electrochemical recognition of cations, anions and neutral guest species by redox-active receptor molecules. Coord. Chem. Rev. 185-186, 3-36 (1999).
Beer, P.D. & Hayes, E.J. Transition metal and organometallic anion complexation agents. Coord. Chem. Rev. 240, 167-189 (2003).
Beer, P.D. & Cadman, J. Electrochemical and optical sensing of anions by transition metal based receptors. Coord. Chem. Rev. 205, 131-155 (2000).
Ferguson, G., Glidewell, C., Opromolla, G., Zakaria, C.M. & Zanello, P. The redox behaviour of some bis-ferrocenyl compounds: crystal and molecular structures of diferrocenylmethane and diferrocenylmethanol. J. Organomet. Chem. 517, 183-190 (1996).
LeVanda, C., Cowan, D.O., Leitch, C. & Bechgaard, K. Mixed-valence diferrocenylacetylene cation. J. Am. Chem. Soc. 96, 6788-6789 (1974).
Robin, M.B. & Day, P. Mixed valence chemistry – A survey and classification. Adv. Inorg. Chem. Radiochem. 10, 247 (1967).
Klimova, E.I., et al. 2,3-Diferrocenylcyclopropenone: Synthesis, structure and some chemical and electrochemical properties, Eur. J. Org. Chem. 21, 4265-4272 (2003).
Klimova, E.I., et al. Reactions of 2,3-diferrocenylcyclopropenone with methyllitium and phenyllithium. J. Organomet. Chem. 689, 2395-2400 (2004).
Gritzner, G. & Küta, J. Recommendations on reporting electrode potencials in nonaqueous solvents. Pure Appl. Chem. 4, 461-466 (1984).
Bard, A.J. & Faulkner, L.R. Electrochemical Methods, Fundamentals and Applications (John Wiley and Sons, New York, 1980).
Zanello, P. Inorganic Electrochemistry, theory, practice and application (The Royal Society of Chemistry, Cambridge, UK, 2003).
Bott, A.W. The study of multiple electron-transfer reactions by cyclic voltammetry. Current Separation 16, 61-66 (1997).
Sohn, Y.S., Hendrickson, D.N. & Gray, H.B. Electronic structure of metallocenes. J. Am. Chem. Soc. 93, 3603-3612 (1970).
Lever, A.P.B. Inorganic Electronic Spectroscophy. 2nd. Edition (Elsevier, New York, 1984).