2007, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2007; 10 (1)
Tomografía por Emisión de Positrones: Los nuevos paradigmas
López-Durán FA, Zamora-Romo E, Alonso-Morales JL, Mendoza-Vásques G
Idioma: Español
Referencias bibliográficas: 42
Paginas: 26-35
Archivo PDF: 294.25 Kb.
RESUMEN
La tomografía por emisión de positrones (PET) es una sofisticada técnica empleada en medicina nuclear para el diagnóstico no invasivo de distintas enfermedades. En el PET están fusionadas varias tecnologías para la generación de información cuantitativa, espacial y funcional de los procesos biológicos a través de la obtención de imágenes de los eventos moleculares y celulares tomadas directamente de los organismos vivos, empleando radiofármacos PET.
REFERENCIAS (EN ESTE ARTÍCULO)
Brownell, L.G. A history of positron imaging. Conmemoración del 50 Aniversario del Hospital General de Massachussets, USA (1999).
Dirac, P.A.M. Theory of electrons and positrons. Nobel Lecture. December 12 (1933).
Anderson, C.D. The production and properties of positrons. Nobel Lecture. December 12 (1936).
Sweet, W.H. The use of nuclear disintegration in the diagnosis and treatment of brain tumor. New England Journal of Medicine 245, 875-878 (1951).
Brownell, G.L. & Sweet, W.H. Localization of brain tumors with positron emitters. Nucleonics 11, 40-45 (1953).
Brownell, G.L. et al. New developments in positron scintigraphy and the application of cyclotron-produced positron emitters. in Proceeding of the Symposium on Medical Radioisotope Scintigraphy (Salzburg 6-15 August 1968, Vienna, IAEA) págs. 163-176.
Brownell, G.L. & Burnham, C.A. MGH positron camera. in Nerem 1972 Record 2, 117 (1972).
Burnham, C.A. & Brownell, G.L. A multi-crystal positron camera. IEEE Transactions on Nuclear Science NS-19, 201-205 (1972).
Brownell, G.L., Burnham, C.A., Hoop, B.Jr. & Bohning, D.E. Quantitative dynamic studies using short-lived radioisotopes and positron detection. in Proceedings of the Symposium on Dynamic Studies with Radioisotopes in Medicine, Rotterdam (August 31-September 4, 1970, IAEA, Vienna, 1971) págs. 161-172.
Chesler, D.A. Positron tomography and three-dimensional reconstruction technique. in Tomographic Imaging in Nuclear Medicine (ed. Freedman, G.S.) 176-183 (The Society of Nuclear Medicine, New York, 1973).
Chesler, D.A., Hoop, B.Jr. & Brownell, G.L. Transverse section imaging of myocardium with 13NH4. Journal of Nuclear Medicine 14, 623 (1973).
Hounsfield, G.N. Computerized transverse axial scanning (tomography). Part I: Description of system. Part II: Clinical applications. British Journal of Radiology 46, 1016-1022 (1973).
Cormack, A.M. Reconstruction of densities from their projections, with applications in radiological physics. Physics in Medicine and Biology 18, 195-207 (1973).
Phelps, M.E., Hoffman, E.J., Mullani, N.A. & Ter-Pogossian, M.M. Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med. 16, 210-224 (1975).
Lawrence, E.O. The medical cyclotron of the Crocker Radiation Laboratory. Science 90, 407-408 (1939).
Wolf, A.P. & Redvanly, C.S. Carbon-11 and radiopharmaceuticals. Int. J. Appl. Radiat. Isot. 28, 29-48 (1977).
Wolf, A. P. Fluorine-18 chemistry and its application to positron emission tomography. J. Fluorine Chem. 23(5), 412 (1983).
Elsinga, P.H. Radiopharmaceutical chemistry for positron emission tomography. Methods 27, 208-217 (2002).
Ter-Pogossian, M.M. & Powers, W.E. The use of radioactive oxygen-15 in the determination of oxygen content in malignant neoplasms. Radioisotopes in Scientific Research, Pergamon Press: London (1958).
Ter-Pogossian, M.M., Eichling, J.O., Davis, D.O. & Welch, N.J. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. Journal of Clinical Investigation 49, 381-391 (1970).
Valk, P.E., Bailey, D.L., Townsend, D.W. et al. Positron emission Tomography Basic Science and Clinical Practice (Springer, Cap. 8, 2003). pág. 22.
Parodi, O., Schelberth, H.R., Schwaiger, M. et al. Cardiac emission commputed tomography: underestimation of regional tracer concentrations due to wall motion abnormalities. J. Comp. Assist. Tomogr. 8, 1083-1092 (1984).
Parodi, O., Schelberth, H.R., Schwaiger, M. et al. Cardiac emission commputed tomography: underestimation of regional tracer concentrations due to wall motion abnormalities. J. Comp. Assist. Tomogr. 8, 1083-1092 (1984).
Kalender, W.A., Seissler, W., Klotz, E. & Vock P. Spiral volumetric CT whit single-breath-hold technique, continuos transport, and continuos scanner rotation. Radiology 176, 181-183 (1990).
Particular requirements for the safety of x-ray equipment for computed tomography. in Medical Electrical Equipment. Part 2-44 (Geneva, Switzerland, Internacional Electrotechnical Commission, 1999).
Leschka. S., Alkadhi. H., Plass, A. et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur. Herat. J. 26, 1482-1487 (2005).
Kinahan, P.E., Townsed, D.W., Beyer, T. et al. Attenuation correction for a combined 3D PET/CT scanner. Med. Phys. 25, 2046-2053 (1998).
Valentín, J. Annals of the ICRP: Publication 80 (Stockholm, Sweden, Pergamon, 1998).
Ahluwalia, B.D., Hales, C.A., Brownell, G.L. & Kazemi, H. Study of regional lung function using cyclotron produced C15O2 (RSNA and AAPM, Chicago, November, 1973).
BrownelL, G.L. et al. Transverse section imaging of radionuclide distribution in the heart, lung and brain. in Workshop on Reconstruction Tomography, 1976, Publ. Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine. (eds. Ter-Pogossian, M.M., Phelps, M.E. & Brownell, G.L.) 293-307 (University Park Press, Baltimore, 1977).
Boucher, C.A., Beller, G.A., Ahluwalia, B., Block, P.C. & Brownell, G.L. Inhalation imaging with oxygen-labeled carbon dioxide for detection and quantification of left-to-right shunts. Circulation Suppl 2, 145 (1976).
Ter-Pogossian, M.M., Phelps, M.E., Hoffman, E.J. & Mullani, N.A. A positron emission transaxial tomography for nuclear medicine Imaging (PETT). Radiology 114, 89-98 (1975).
Benoit, P. et al. Comparison of 18F-FDG and 11C-Methionine for PET-Guided Stereotactic Brain Biopsy. J. Nucl. Med. 45, 1293-1298 (2004).
June, K.C. et al. Usefulness of 11C-Methionine PET in the evaluation of brain lesions that are hypo. Or isometabolic on 18F-FDG PET. European J. of Nucl. Med. 29(2), 176-182 (2002).
Muzik, O. et al. Automated region definition for cardiac nitrogen-13-ammonia PET imaging. J. Nucl. Med. 34, 83-91 (1993).
Reivich, M. et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circular Research 44,127-137 (1979).
Phelps, M.E. et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (18F) 2-fluoro-2-deoxy-D-glucose: Validation of method. Annals of Neurology 6, 371-388 (1979).
Sokoloff, L. et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. Journal of Neurochemistry 28, 897-916 (1977).
Ido, T. et al. Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and C-14-2-deoxy-2-fluoro-D-glucose. The Journal of Labelled Compounds and Radiopharmaceuticals 14, 175-182 (1978).
Brownell, G.L., Chesler, D.A. & Pizer, S.M. Scintigraphic data imaging. in Instrumentation in Nuclear Medicine (eds. Hine & Sorenson) Chapter 5 (1974).
Subramanyam, S., Alpert, N.M., Hoop, B.Jr., Brownell, G.L. & Taveras, J.M. A model for regional cerebral oxygen distribution during continuous inhalation of 15O2, 11CO, and C15O2. Journal of Nuclear Medicine 19, 48-53 (1978).
Raichle, M.E., Martin, W.R.W, Herscovitch, P., Mintun, M.A. & Markham, J. Brain blood flow measured with intravenous H215O. II. Implementation and validation. Journal of Nuclear Medicine 24, 790-798 (1973).