2008, Number 1-2
Next >>
Microbiología 2008; 50 (1-2)
Phenotypic characterization of the morphological mutant UVM9 of Sporothrix shenckii
Torres GH, Arenas-López G, Sabanero M, Bieler-Antolín AI, Vélez L, Trejo A
Language: English
References: 67
Page: 5-12
PDF size: 189.06 Kb.
ABSTRACT
Dimorphic transition of some fungal pathogens is an important attribute of some pathogenic fungi. The human pathogen
Sporothrix schenckii is a dimorphic fungus, capable of growth either as filamentous hyphae or as yeast budding cells in response to environmental conditions. In the present study we report the phenotypic characteristics of the morphological mutant UVM9, obtained from a clinical isolate of
Sporothrix schenckii. Mutant strain could not develop as budding cell, though it switches to hyphae cells shape at any culture condition. However the polarized growth and extension of the germ tube could not be sustained and abnormal short and thick hypha with atypical conidia-like cells were observed. Resistance phenotype to drugs, which target cytoskeleton and cell wall suggest that the integrity of these structures is altered in the mutant. Pleiotropic phenotype could be explained by an alteration in the tubulin cytoskeleton.
REFERENCES
Kwon-Chung, K.J. &. Bennett, J.E. 1992. Sporotrichosis, pp.707-729. In: K.J. Kwon-Chung. & J.E. Bennett (Eds). Medical Mycology. Lea & Febiger; Philadelphia.
Travassos L.R. 1985. Sporothrix schenckii, pp. 121-131. In: PJ. Szanizlo (Ed) Fungal Dimorphism with Emphasis on Fungi Pathogenic for Humans. Plenum Press, New York.
Alison E. M. Adams & J. R. Pringle 1984. Relationship of Actin and Tubulin Distribution to Bud Growth in Wild-type and Morphogenetic-Mutant Saccharomyces cerevisiae. J. of Cell Biol. 934-945.
Madhani, H. D. & G.R. Fink. 1998. The control of filamentous differentiation and virulence fungi. Trends Cell Biology. 8:348-353.
Xiang X. & M. Plamanny. 2003. Cytoskeleton and motor proteins in filamentous fungi Current Opinion in Microbiology, 6:628-633.
Akashi, T., Kanbe, T. & K. Tanaka. 1994. The role of the cytoskeleton in the polarized growth of the germ tube in Candida albicans. Microbiology. 140:271-280.
Seiler, S., Nargang, F.E., Steinberg, G. & M. Schliwa. 1997. Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO J. 16:3025-3034.
Wu, Q., Sandrock, T.M., Turgeon, B.G., Yoder, O.C., Wirsel, S.G. & J. R. Aist. 1998. A fungal kinesin required for organelle
motility, hyphal growth and morphogenesis. Mol Biol Cell. 9: 89-101.
Schuchardt, I., Assmann, D. , Thines, E., Schuberth, C. & G. Steinberg. 2005. Myosin-V, Kinesin-1, and Kinesin-3 cooperate in hyphal growth of the fungus Ustilago maydis. Mol Biol Cell. 11:5191-201.
Harris, S.D. & M. Momany. 2004. Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet Biol. 41:391-400.
Resto, S. & N. Rodríguez-del Valle. 1988. Yeast cell cycle of Sporothrix schenckii. J Med Vet Mycol. 26: 13-24.
Torres-Guerrero, H. & G. Arenas-Lopez. 1998. UV irradiation induced high frequency of colonial variants with altered morphology in Sporothrix schenckii. Med Mycol. 36:81-88.
Rodríguez-del Valle, N., Rosario, M. & G. Torres-Blasini. 1983. Effects of pH, temperature, aeration and carbon source on the development of the mycelial or yeast forms of Sporothrix schenckii from conidia. Mycopathologia. 82:83-88.
Kitamura, K. & Y. Yamamoto. 1972. Purification and properties of an enzyme, zymolyase, which lyses viable yeast cells. Arch Biochem Biophys. 53:403-406.
Steinberg, G., Wedlich-Soldner, R., Brill, M. & I. Schulz. 2001. Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity. J Cell Sci. 114: 609-622.
Cooper, J.A. 1987. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 105:1473-1478.
Jordan, M.A. & L. Wilson, 1998. Use of drugs to study role of microtubule assembly dynamics in living cells. Methods Enzymol. 298: 252-276.
Horio, T. & B. Oakley. 2005 The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell. 16:918-926.
Fuchs U, Manns I, & G.Steinberg 2005. Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol Biol Cell. 16: 2746-2758.
Panda, D., Rathinasamy K., Santra, M. & L. Wilson. 2005. Kinetic suppression of microtubule dynamic instability by griseofulvin: Implications for its possible use in the treatment of cancer. PNAS 102: 9878-9883.
Elorza, M.V., Rico, H. & R. Sentandreu. 1983. Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisíae and Candida albicans cells. J. Gen. Microbiol. 129:1577-1582.
Surarit, R., Gopal., P.K & M.G. Shepherd. 1988. Evidence for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans. J. Gen. Microbiol. 134:1723-1730.
Hartland, R.P., Vermeulen, C.A., Klis, F.M., Sietsma, J.H, & J.G. Wessels. 1994. The linkage of (1-3)-beta-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae. Yeast. 10:1591-1599.
Rowbottom, L., Munro, C.A. & N.A. Gow. 2004. Candida albicans mutants in the BNI4 gene have reduced cell-wall chitin and alterations in morphogenesis. Microbiology. 150:3243-3252.
Herman, PK. & J. Rine. 1997. Yeast spore germination: a requirement for Ras protein activity during re-entry into the cell cycle. EMBO J. 16:6171-6181.
Yokoyama, K., Kaji, H., Nishimura, K & M. Miyaji. 1990. The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans. J Gen Microbiol. 136:1067-1075.
Akashi, T., Kanbe T., & K. Tanaka. 1994. The role of the cytoskeleton in the polarized growth of the germ tube in Candida albicans. Microbiology. 140:271-280.
Yokoyama, K., Kaji, H., Nishimura, K., & Miyaji M. 1994. The role of microfilaments and microtubules during pH-regulated morphological transition in Candida albicans. Microbiology. 140:281-287.
Richards, K. L., Anders, K. R., Nogales, E., Schwartz, K., Downing, K. & H. Botstein 2000. Structure-function relationships in yeast tubulins. Mol Biol Cell. 11:1887-903.
Engqvist-Goldstein, A.E. & D.G. Drubin. 2003. Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol.. 19:287-332.
Steinberg, G. & M. Schliwa. 1993. Organelle movements in the wild type and wall-less fz;sg;os-1 mutants of Neurospora crassa are mediated by cytoplasmic microtubules. J Cell Sci. 106: 555-564.
Mendonça, L., Gorin, P.A., Lloyd, K.O. & L.R. Travassos. 1976. Polymorphism of Sporothrix schenckii surface polysaccharides as a function of morphological differentiation. Biochemistry. 15:2423-2431.
DeNobel, J. G., Kils, F. M., Priem, J., Munnik, T & H. van den Ende. 1990. The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6:491-499.
Kwon-Chung, K.J. &. Bennett, J.E. 1992. Sporotrichosis, pp.707-729. In: K.J. Kwon-Chung. & J.E. Bennett (Eds). Medical Mycology. Lea & Febiger; Philadelphia.
Travassos L.R. 1985. Sporothrix schenckii, pp. 121-131. In: PJ. Szanizlo (Ed) Fungal Dimorphism with Emphasis on Fungi Pathogenic for Humans. Plenum Press, New York.
Alison E. M. Adams & J. R. Pringle 1984. Relationship of Actin and Tubulin Distribution to Bud Growth in Wild-type and Morphogenetic-Mutant Saccharomyces cerevisiae. J. of Cell Biol. 934-945.
Madhani, H. D. & G.R. Fink. 1998. The control of filamentous differentiation and virulence fungi. Trends Cell Biology. 8:348-353.
Xiang X. & M. Plamanny. 2003. Cytoskeleton and motor proteins in filamentous fungi Current Opinion in Microbiology, 6:628-633.
Akashi, T., Kanbe, T. & K. Tanaka. 1994. The role of the cytoskeleton in the polarized growth of the germ tube in Candida albicans. Microbiology. 140:271-280.
Seiler, S., Nargang, F.E., Steinberg, G. & M. Schliwa. 1997. Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO J. 16:3025-3034.
Wu, Q., Sandrock, T.M., Turgeon, B.G., Yoder, O.C., Wirsel, S.G. & J. R. Aist. 1998. A fungal kinesin required for organelle motility, hyphal growth and morphogenesis. Mol Biol Cell. 9: 89-101.
Schuchardt, I., Assmann, D. , Thines, E., Schuberth, C. & G. Steinberg. 2005. Myosin-V, Kinesin-1, and Kinesin-3 cooperate in hyphal growth of the fungus Ustilago maydis. Mol Biol Cell. 11:5191-201.
Harris, S.D. & M. Momany. 2004. Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet Biol. 41:391-400.
Resto, S. & N. Rodríguez-del Valle. 1988. Yeast cell cycle of Sporothrix schenckii. J Med Vet Mycol. 26: 13-24.
Torres-Guerrero, H. & G. Arenas-Lopez. 1998. UV irradiation induced high frequency of colonial variants with altered morphology in Sporothrix schenckii. Med Mycol. 36:81-88.
Rodríguez-del Valle, N., Rosario, M. & G. Torres-Blasini. 1983. Effects of pH, temperature, aeration and carbon source on the development of the mycelial or yeast forms of Sporothrix schenckii from conidia. Mycopathologia. 82:83-88.
Kitamura, K. & Y. Yamamoto. 1972. Purification and properties of an enzyme, zymolyase, which lyses viable yeast cells. Arch Biochem Biophys. 53:403-406.
Steinberg, G., Wedlich-Soldner, R., Brill, M. & I. Schulz. 2001. Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity. J Cell Sci. 114: 609-622.
Cooper, J.A. 1987. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 105:1473-1478.
Jordan, M.A. & L. Wilson, 1998. Use of drugs to study role of microtubule assembly dynamics in living cells. Methods Enzymol. 298: 252-276.
Horio, T. & B. Oakley. 2005 The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell. 16:918-926.
Fuchs U, Manns I, & G.Steinberg 2005. Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol Biol Cell. 16: 2746-2758.
Panda, D., Rathinasamy K., Santra, M. & L. Wilson. 2005. Kinetic suppression of microtubule dynamic instability by griseofulvin: Implications for its possible use in the treatment of cancer. PNAS 102: 9878-9883.
Elorza, M.V., Rico, H. & R. Sentandreu. 1983. Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisíae and Candida albicans cells. J. Gen. Microbiol. 129:1577-1582.
Surarit, R., Gopal., P.K & M.G. Shepherd. 1988. Evidence for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans. J. Gen. Microbiol. 134:1723-1730.
Hartland, R.P., Vermeulen, C.A., Klis, F.M., Sietsma, J.H, & J.G. Wessels. 1994. The linkage of (1-3)-beta-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae. Yeast. 10:1591-1599.
Rowbottom, L., Munro, C.A. & N.A. Gow. 2004. Candida albicans mutants in the BNI4 gene have reduced cell-wall chitin and alterations in morphogenesis. Microbiology. 150:3243-3252.
Herman, PK. & J. Rine. 1997. Yeast spore germination: a requirement for Ras protein activity during re-entry into the cell cycle. EMBO J. 16:6171-6181.
Yokoyama, K., Kaji, H., Nishimura, K & M. Miyaji. 1990. The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans. J Gen Microbiol. 136:1067-1075.
Akashi, T., Kanbe T., & K. Tanaka. 1994. The role of the cytoskeleton in the polarized growth of the germ tube in Candida albicans. Microbiology. 140:271-280.
Yokoyama, K., Kaji, H., Nishimura, K., & Miyaji M. 1994. The role of microfilaments and microtubules during pH-regulated morphological transition in Candida albicans. Microbiology. 140:281-287.
Richards, K. L., Anders, K. R., Nogales, E., Schwartz, K., Downing, K. & H. Botstein 2000. Structure-function relationships in yeast tubulins. Mol Biol Cell. 11:1887-903.
Engqvist-Goldstein, A.E. & D.G. Drubin. 2003. Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol.. 19:287-332.
Steinberg, G. & M. Schliwa. 1993. Organelle movements in the wild type and wall-less fz;sg;os-1 mutants of Neurospora crassa are mediated by cytoplasmic microtubules. J Cell Sci. 106: 555-564.
Mendonça, L., Gorin, P.A., Lloyd, K.O. & L.R. Travassos. 1976. Polymorphism of Sporothrix schenckii surface polysaccharides as a function of morphological differentiation. Biochemistry. 15:2423-2431.
DeNobel, J. G., Kils, F. M., Priem, J., Munnik, T & H. van den Ende. 1990. The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6:491-499.