2008, Número 1-2
<< Anterior Siguiente >>
Microbiología 2008; 50 (1-2)
Evaluación y caracterización de las propiedades antimicrobiales de derivados-pregnenolona sobre Staphylococcus aureus, Klebsiella pneumoniae y Escherichia coli
Figueroa VL, Ceballos RG, Díaz CF, López RMC, Escalante MRM, García FLV
Idioma: Ingles.
Referencias bibliográficas: 35
Paginas: 13-18
Archivo PDF: 118.79 Kb.
RESUMEN
Recientemente han sido desarrollados conjugados esteroide-antibiótico como agentes potenciales terapéuticos para enfermedades infecciosas. En este trabajo fue evaluada la actividad antibacteriana de dos derivados de pregnenolona sobre
S. aureus, K. pneumoniae y E. coli usando el método de dilución y la concentración mínima inhibitoria (CMI). Los resultados obtenidos indican que el crecimiento bacterial de
S. aureus fue inhibido con cefotaxima (MIC = 0.25 mg/ml), gentamicina (MIC = 0.0125 mg/ml), hemisuccinato-pregnenolona (MIC = 1 mg/ml), etilenediamina-hemisuccinato-pregnenenolona (MIC = 0.25 mg/ml) y la mezcla de los dos derivados de pregnenolona (MIC = 0.5 mg/ml). Otros resultados mostraron que el crecimiento bacterial de
E. coli fue también inhibido con cefotaxima (MIC = 0.25 mg/ml), gentamicina (MIC = 0.00625 mg/ml), hemisuccinato-pregnenolona (MIC = 1 mg/ml), etilenediamina-hemisuccinato-pregnenenolona (MIC = 0.5 mg/ml) y la mezcla de los dos derivados de pregnenolona (MIC = 0.5 mg/ml). Experimentos alternativos, mostraron que el crecimiento bacterial de
K. pneumoniae fue inhibido con cefotaxima (MIC = 0.125 mg/ml), gentamicina (MIC = 0.0.125 mg/ml), hemisuccinato-pregnenolona (MIC = 1 mg/ml), etilenediamina-hemisuccinato-pregnenenolona (MIC = 0.5 mg/ml) y la mezcla de los dos derivados de pregnenolona (MIC = 0.5 mg/ml). Nuestros resultados sugieren que el efecto inducido por los derivados de pregnenolona podría ser por la interacción con algunos factores de la membrana bacterial que son específicos para la resistencia bacterial. En este sentido, la actividad antibacterial de los derivados de pregnenolona puede depender de la naturaleza de los grupos funcionales involucrados en su estructura química que parece ser la llave requerida para la actividad antibacterial.
REFERENCIAS (EN ESTE ARTÍCULO)
Pinner, R.W., Teutsch, S. M., Simonsen, L., Klug, L.A., Graber, J.M. & M. Clarke. 1996. Trends in infectious diseases mortality in the United States. Journal of the American Medical Association. 275:189-93.
Crossley, K.B., & Peterson, P. 1996. Infections in the elderly. Clinical Infectious Diseases. 22:209-215.
Norman, D.C. 1999. Special infectious disease problems in geriatrics. Clinical Geriatrics suppl 1:3-5.
Chambers, H.F. 2001.The changing epidemiology of Staphylococcus aureus. Emerging Infectious Diseases. 7:178-182.
Podschun, R., & U. Ullmann. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Review. 11:589-603.
Lautenbach, E., Patel, J.B., Bilker, W.B., Edelstein, P.H., & N. Fishman. 2001. Extended-spectrum b-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infections and impact of resistance or outcomes. Clinical Infectious Diseases. 32:1162-1171.
Rothstein, D. M., Hartman, A., Cynamon, M. & B. Eisenstein. 2003. Development potential of rifalazil. Expert Opinion on Investigational Drugs. 12:255-271.
Wilson, W.R., Karchmer, A.W., & A. Dajani. 1995. Antibiotic treatment of adults with infective endocarditis due to streptococci, enterococci, staphylococci, and HACEK microorganisms. Journal of the American Medical Association. 274(21):1706-13.
Yoo, B., Triller, D., Yong, C. & T. Lodise. 2004. Gemifloxacin: A New Fluoroquinolone Approved for Treatment of Respiratory Infections The Annals of Pharmacotherapy. 38: 1226-1235.
Killgore, M., March, K. & B. 2004. Guglielmo. Risk Factors for Community-Acquired Ciprofloxacin-Resistant Escherichia coli Urinary Tract Infection. The Annals of Pharmacotherapy. 38:1148-1152.
Hackbarth, C.J. & Chambers, H.F. 1989. Methicillin-resistant staphylococci: detection methods and treatment of infections. Antimicrobial Agents and Chemotherapy. 33, 995-9.
Maguire, G.P., Arthur, A.D., Boustead, P.J., Dwyer, B. & B. Currie. 1998. Clinical experience and outcomes of community-acquired and nosocomial methicillin-resistant Staphylococcus aureus in a northern Australian hospital. Journal of Hospital Infection. 38, 273-81.
Peschel, A. 2002. How do bacteria resist human antimicrobial peptides? Trends in Microbiology. 10:179-186.
Yeaman, M., & N. Younth. 2005. Mechanism of Antimicrobial Peptide Action and Resistance. Pharmacology Review. 55:27-55.
Ayliffe, G.A. 1997. The progressive intercontinental spread of methicillin-resistant Staphylococcus aureus. Clinical Infectious Diseases. 24:S74-79.
Merlino. J., Watson, J., Rose, B., Beard, M., Gottlieb, T., Bradbury, R., & C. Harbour. 2002. Detection and expression of methicillin/oxacillin resistance in multidrug-resistant and non-multidrug-resistant Staphylococcus aureus in Central Sydney, Australia. Journal of Antimicrobial Chemistry. 49:793-801.
Podschun, R. & U. Ullmann. 1998. Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clinical Microbiology Review. 11:589-603
Prats, G., Mireñis, B., Miró, E., & F. Navarro. 2003. Cephalosporin-resistant E. coli among Summer Camp Attends with Salmonellosis. Emerging Infectious Diseases. 9:1273-1279.
Gordon, E., Barrett, R., & J. Dower. 1994. “Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions”. Journal of Medical Chemistry. 37, 1385-1401.
Schwab, U., Gilligan, P., Jaynes, J., & D. Henke. 1999. In vitro Activities of Designed Antimicrobial Peptides against Multidrug-Resistant Cystic Fibrosis Pathogens. Antimicrobial Agents & Chemotherapy. 43: 1435-1440.
Patch J.A. & A. Barron. 2003. Helical Peptoid Mimics of Magainin-2 Amide. Journal of American Chemistry. 125:12092-12093.
Li, C., Lewis, M.R., Gilbert, A.B., Noel, M.D. & D. Scoville. 1999. Antimicrobial Activities of Amine and Guanidine-Functionalized Cholic Acid Derivatives. Antimicrobial Agents & Chemotherapy. 43:1347-1349.
Kikuchi, K., Bernard, E.M., Sadownik, A., Regen, S.L. & D. Armstrong. 1997. Antimicrobial activities of squalamine mimics. Antimicrobial Agents & Chemotherapy. 41:1433-1438.
Ding, B., Guan, Q., Walsh, J.P., Boswell, J.S., Winter, T.W., Winter, E.S., Boyd, S., Li, C., & P. Savage. 2002. Correlation of the Antibacterial Activities of Cationic Peptide Antibiotics and Cationic Steroid Antibiotics. Journal of Medical Chemistry. 45:663-669.
Ding, B., Taotofa, U., Orsak, T., Chadwell, M. & P. Savage. 2004. Synthesis and Characterization of Peptide-Cationic Steroid Antibiotic Conjugates. Organic letters. 6:3433-3436.
Pratt, J.J. 1978. Steroid Immunoassay in clinical chemistry. Clinical Chemistry. 24:1869-1890.
Chiong, R., & A. Betancourt. 1985. “Pruebas Microbiológicas para evaluar la efectividad bactericida de desinfectantes químicos, Sección de Microbiología Sanitaria. Laboratorio de desinfección y esterilización, pp. 24-30. Instituto Nacional de Higiene, Epidemiología y Microbiología”, La Habana Cuba.
Cheng, Y., Ho, D.M. Gottlieb, C.R. & D. Kaen. 1992. Facial Amphiphiles. Journal of American Chemistry Society. 114:7319-7320.
Fisher, W. 1990. Handbook of lipid research: glycolipids, phospholipids, and sulfoglycolipids, pp 123-234. Kates (Eds). Plenum Publishing Corp. NY, New York.
Neuhaus, E.C. & J. Baddley. 2003. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiology & Molecular Biology Review. 67:686-723.
Nizet, V. 2006. Antimicrobial Peptide Resistance Mechanism of Human Bacterial Pathogens. Current Issues in Molecular Biology. 8:223-238.
Matsuhashi, M., Dietrich C.P. & J. Strominger. 1965. Incorporation of Glycine into the Cell Wall Glycopeptide in Staphylococcus aureus: Role of sRNA and Lipid Intermediates. Proceedings of the National Academy of Sciences. 54;587-594.
Brötz, H., Bierbaum, G., Reynolds P. & H. Sahl. 1997. The Lantibiotic Mersacidin Inhibits Peptidoglycan Biosynthesis at the Level of Transglycosylation. European Journal of Biochemistry. 246:193-199.
Li, C., Budge, L.P., Driscoll, C.D., Willardson, B.M., Allman, G.W. & P. Savage. 1999. Incremental Conversion of Outer-Membrane Permeabilizers into potent Antibiotics for Gram-negative Bacteria. Journal of American Chemistry Society. 121:931-940.
Ding, B., Yin, N., Cardenas, G.J., Evanson, R., Orsak, T., Fan, M., Turin, G. & P. Savage. 2004. Origins of Cell selectivity of Cationic steroid Antibiotics. Journal of American Chemistry Society. 126:13642-13648.